Autumn 2003 Shensheng Zhang

C Programming Style for CS 111: Programming Methodology

From material by Robert Plummer, Julie Zelenski, and Harry Lai

Aswe will stress al the time, aworking program is only half the challenge—constructing
an elegant and well-engineered solution is your ultimate goal. Developing a good sense
of style takes practice and work, conveniently we've got plenty of both coming up in this
course. Your section leader's feedback on your code will be invaluable in helping you
learn how to design and organize code in a clear, readable manner that works for you. As
with any complex activity, there is no one "right" way that can easily be described, and
there is no easy-to-follow checklist of do's and don'ts. But that said, this handout will try
to identify some qualities that can contribute to readable, maintainable programs to give
you an idea what we're working toward.

Why are we concer ned about programming style?

When your program is digested by a C compiler, style makes little difference. The
comments, the well-chosen names, and the careful aignment of the code have no effect
on the ultimate execution of the program. So why bother?

The effort you put into achieving good style in your program is clearly for human
consumption, and the most important person who is going to read your code is you. A
program written with good style is more likely to be correct than one without, and it will
be easier for you to debug and modify as you moveit to itsfinal form.

That last point is worth noting. When you develop software in the "real world", and even
for the assignments in the remainder of this course, it is rarely the case that you write the
entire program in one attempt. It isfar more likely that you will get the essential "core" of
the program running, and then add the remaining features. Large problems are simply too
complex to tackle any other way.

The result of this approach is that you will spend some time looking at your own code,
asking questions like "What was | trying to do at this particular point,” or "Where is the
best place to add a new feature?' It is at this point that you will realize the value of an
investment in good code.

Here is a simple example. Which of the following lines of code would you rather work
on?

m=s*h;
distance = rate * time;

The first line gives no hint as to its meaning. If you are lucky, you remember what
guantities the variables hold. If you don't, or if someone else wrote the code, you will
have to spend some time figuring out what is going on. The second line holds no such
mysteries.

Now consider the following attempt to determine a commission based on sales:

if (salesAmt <= 50.0) commission = 0.0;
if (salesAmt > 50.0) if (salesAmt <= 100.0) commission = 0.02 * salesAmt;
if (salesAmt > 100.0) commission = 0.03 * salesAmt;

Though it produces the correct answer, the code above is not nearly as easy to understand
or modify as the following equivalent version:

if (salesAmt <=50.0)

{
commission = 0.0;
} elseif (salesAmt <= 100.0)

{

commission = 0.02 * salesAmt;
} else
{

commission = 0.03 * salesAmt;
b

These two examples should make the point. Writing with clarity is as important for
software asit isfor literature.

Choosing Names

The first step in documenting code is choosing meaningful names for things. For
variables and constants the question is "What isit?' For functions, the question is "What
does it do?' A well-named variable or function helps document all the code where it
appears. Here are afew examples:

Bad Names

sum
LP

Good Names

RunningTotal
lastPayment
balance

Good Names in Context

X

y

|

n
The bad names do not convey enough information, while the good ones explain what
they are in terms that relate to the problem. If you are doing graphics or geometry, x and
y are good names; if you are doing a payroll, they are probably not. You can sometimes

use i as ageneric loop index variable, and n as a generic counter variable, but be careful
and don’t overuse them.

You should not have much difficulty deciding whether your names contribute to
readability. Here are afew guidelines:

Name Guidelines

- Use lower/upper case |astPayment
- Use nouns for variables diameter
- Use verbs for functions PrintPayroll
- Use uppercase for constants #define MAX_VALUE 1000
- Use moderate length
numberOf Peopl eOnOlympicTeam too long
ntm too short
numTeamMembers about right

- The name should suggest the concept

The last point refers to the situation where we have a concept in mind, and ask ourselves
what variable name it suggests. That approach is actually backwards. If other people read
your program, they don't know your concept — all they have is the variable name. So it is
the name that should suggest the concept, not the other way around.

Avoid content-less, terse, or cryptically abbreviated variable names. Names like "a',
"temp", "nh" may be quick to type, but they're awful to read. Choose clear, descriptive
names. "average', "height", or "numHospitals’. In general, names should mean
something. If a variable contains a list of floats that represent the heights of al the
students, don't call it list, and don't call it floats, cal it heights. There are a few variable
naming idioms that are so prevalent among programmers that they form their own
exception class.

i, K Integer loop counters.
n, len, length Integer number of elementsin some sort of aggregation
X, Y Cartesian coordinates. May be integer or real.

The uses of the above are so common, that the apparent lack of content is acceptable.

Names of #define-d constants should make it readily apparent how the constant will be
used. "MAX_NUMBER" is a rather vague name: maximum number of what?
"MAX_NUM_STUDENTS" is better, because it gives more information about how the
constant is used.

Function names should clearly describe their behavior. Functions which perform actions
are best identified by verbs, e.g. "FindSmallest()" or "DrawTriangle()". Predicate functions
and functions which return information about a property of an object should be named
accordingly: e.g. "IsPrime()", " StringLength()", "AtEndOfLine()".

Making your code self-documenting
The following line of code adds one to the variable daysin certain circumstances:

if (((year % 4==0) && (year % 100 != 0)) || (year % 400 == 0))

{
dayst++;
|
Unless you are familiar with the formula on the right, figuring out the intent might take
some effort. Now consider the following alternative:

leapY earResult = ((year % 4 == 0) && (year % 100 !=0)) || (year % 400 == 0);
if (leapYearResult)

{
days++;
|3
Big difference! By adding an extra variable, the programmer has made the computation
completely clear’. No comments are required; no reference manual is needed. The code

provides its own documentation by way of the variable names. Of course, the formula
still hasto be correct. Just saying it checks for leap year doesn't mean that it does.

Using comments effectively

The motivation for commenting comes from the fact that a program is read many more
times that it is written. A program must strive to be readable, and not just to the
programmer who wrote it. A program expresses an agorithm to the computer. A program
is clear or "readable” if it also does a good job of communicating the algorithm to a
human. Given that C is a rather cryptic means of communication, an English description
is often needed to understand what a program is trying to accomplish or how it was
designed. Comments can provide information that is difficult or impossible to get from
reading the code. Some examples of information you might find in comments:

® General overview. What are the goas and requirements of this program? This
function?

® Design decisions. Why was a particular data structure or agorithm chosen? Were
other strategies tried and rejected?

® FError handling. How are error conditions handled? What assumptions are made?
What happens if those assumptions are viol ated?

® Nitty-gritty code details. Comments are invaluable for explaining the inner workings
of particularly complicated (often labeled "clever") paths of the code.

® Planning for future. How might one make modifications or extensions later?
® And much more... (Thislist is by no means exhaustive)

At the top of each file, it isagood convention to begin with an overview comment for the
program, interface, or implementation contained in the file. The overview is the single
most important comment in a program. It's the first thing that anyone reading your code

1 Another equally valid design is to make a separate function called Is_eapYear. It would take in a year (as an integer)
and return TRUE or FALSE.

will read. The overview comment explains, in general terms, what strategy the program
uses to produce its output. The program header should lay out a roadmap of how the
algorithm works— pointing out the important routines. The overview should mention the
role of any other files or modules that the program depends on. Essentially, the overview
contains all the information which is not specific or low-level enough to be in a function
comment, but which is helpful for understanding the program as awhole.

Each noteworthy function is often preceded by a comment that contains the function's
purpose, a description of the parameters, and details of the function's return value, if any.
It's a good idea to mention if the function relies directly on any #define-d constants.
Additionally, you should describe any specia cases or error conditions the function
handles (e.g. "...prints out an error message if divisor is 0", or "...returns the constant
NOT_FOUND if the word doesn't exist").

Comments should correctly match the code; it's particularly unhelpful if the comment
says one thing but the code does another thing. One adage to keep in mind is that
"Misleading comments are wor se than no comments.” It's easy for such inconsistencies to
creep in over the course of developing and changing a function. Be careful to give your
comments at once-over at the end to make sure they are still accurate.

Inside your functions, you will not need too many comments. Look at it this way. If your
variable and function names are descriptive, if your code iswell laid out, and if you have
avoided obscure, "tricky" code, what else is there to say? The best program is one that is
so clear from the outset that few comments are actually needed.

The audience for all commenting is a C-literate programmer. Therefore you should not
explain the workings of C or basic programming techniques. Useless over-commenting
can actually decrease the readability of your code, by creating muck for areader to wade
through. For example, the comments

int counter; /* declare a counter variable */

i=i+1;/*addltoi*/

while (index < length)... /* whileindex islessthan length */

num = num + 3 - (num % 3); /* add 3 to num and subtract num mod 3 */

do not give any additional information that is not apparent in the code. Save your breath
for important higher-level comments! Only illuminate low-level details of your
implementation where the code is complex or unusual enough to warrant such
explanation. A good rule of thumb is: explain what the code accomplishes rather than
repeat what the code says. If what the code accomplishesis obvious, then don't bother.

Here are afew commenting guidelines:
- Comments should make the code accessible to the reader
- Explain the code's intent in the heading
- Keegp the comments up to date (if you update the code, update the comment)
- Don't comment bad code--fix it
- Avoid useless comments
Attributions

All code copied from books, handouts or other sources, and any assistance received from
other students, section leaders, fairy godmothers, etc. must be cited. We consider this an
important tenet of academic integrity. For example,

[* IsLeapY ear is adapted from Eric Roberts text,

* The Art and Science of C_, p. 200.

*/
or

/* | received help designing the Battleship data structure, in

* particular, the idea for storing the shipsin alphabetical order,

* from Joe Smith, a section leader, on Tuesday, Nov. 11, 2000.
*/

Blank lines

Including blank lines to separate sections of code can improve readability whether there
are comments or not. Without even reading the following code, it is easy to see that this
block does three jobs:

{

structSize = sizeof(CHOOSE_COLOR);
hwndOwner = hwnd;
windowFlags = CC_RGBINIT;

ChooseColor(newColor);

if (rgbResult !'= inputSampleRef)

{
inputSampleBrush = CreateSolidBrush(inputSampleRef);

InvalidateRectangle(hWnd, NULL, TRUE);
1
}
Booleans

Boolean expressions and variables seem to be prone to redundancy and awkwardness.
Replace repetitive constructions with the more concise and direct aternatives. A few
examples:

if (flag ==TRUE) isbetter written as if (flag)
if (matches > 0) Isbetter written as found = (matches > 0);
{
found = TRUE;
} ese
{
found = FALSE;
¥
if (hadError == FALSE) isbetter written as return ('hadError);
{
return TRUE;
} else
{
return FALSE;

}

Constants

Avoid embedding magic numbers and string literals into the body of your code. Instead
you should #define a symbolic hame to represent the value. This improves the readability
of the code and provides for localized editing. You only need change the value in one
place and all uses will refer to the newly updated value.

#define-d constants should be independent; that is, you should only need to change one
#define to change something about a program. For example,

#define RECT_WIDTH 3
#define RECT_HEIGHT 2
#define RECT_PERIMETER 10 /* WARNING: problem */

is not so hot, because if you wanted to change RECT_WIDTH or RECT_HEIGHT, you
would also have to remember to change RECT_PERIMETER. The correct way is:

#define RECT_WIDTH 3
#define RECT_HEIGHT 2
#define RECT_PERIMETER (2* RECT_WIDTH + 2* RECT_HEIGHT)

Parentheses should be placed around any constant definition that involves an expression.
This insures that the constant will be evaluated as intended, and that the result will not be
altered by operator precedence in the expression in which the constant is used.

Decomposition

Decomposition does not mean taking a completed program and then breaking up large
functions into smaller ones merely to appease your section leader. Decomposition is the
most valuable tool you have for tackling complex problems. It is much easier to design,
implement, and debug small functional units in isolation that to attempt to do so with a
much larger chunk of code. Remember that writing a program first and decomposing
after the fact is not only difficult, but prone to producing poor results. You should
decompose the problem, and write the program from that already decomposed framework.
In other words, you are aiming to decompose problems, not programs!

The decomposition should be logical and readable. A reader shouldn't need to twist her
head around to follow how the program works. Sensible breakdown into modular units
and good naming conventions are essential. Functions should be short and to the point.

Strive to design functions that are general enough for a variety of situations and achieve
specifics through use of parameters. This will help you avoid redundant
functions—sometimes the implementation of two or more functions can be sensibly
unified into one genera function, resulting in less code to develop, comment, maintain,
and debug. Avoid repeated code. Even a handful of lines repeated are worth breaking out
into a helper function called in both situations.

Formatting and Capitalization

One final point about style is that you should develop a consistent approach. Doing so
improves readability and adds information to the code. For example, if you always use all
caps and underscores for constants, then when you see aline like this:

ChoosePlayers (MAX_TEAM_SIZE);

you know right away that MAX_TEAM_SIZE is a constant and that it is defined
somewhere in a #define statement. If sometimes your constants use mixed case, and
sometimes your variables are al caps, then you can't tell for sure and you've lost one
small chance to make your code more understandable.

One convention you will have to decide on is the placement of braces. Your textbook
presents the "classic" method for C, and another method (vertically aligning braces with
indented code inside) has been shown in class. For the purpose of simple, let's all keep
the form we used in class (vertically aigning braces with indented code inside).

For capitalization schemes, we will typically capitalize each word in the name of a
function, variables will be named beginning with abbreviation on the data type, #define
constants will be completely uppercased, etc.

grouping

if (condition) // do not place ‘{* here athough it is perfectly OK in many textbooks
{ [/l using combound statement brackts even it is a simple statement.

statements;
}; llendwith*; athoughitisall right without it.

self-documenting

i, k

X, Y, Z

windows identifier segment
segment segment
segment
°
°
1.

| Datatype | Prefix | Example
| Boolean | bin | binFound
| Byte | byt | bytRasterData
| Date (Time) | dm | dtmStart
| Double | dol | dbl Tolerance
| Error | er | errOrderNum
| Integer | int | intQuantity
| Long | Ing | IngDistance

4 main

| String | str | strFName

| Point | pnt | pntArray

| FilePoint | fpr | fptinFile

| Char | chr | chrDummy
User-defined udt udtEmployee
type

intWidth intStudentCount
goto continue break
return

/* *************< FUﬂCtIOﬂ Narne >*****************

< function purpose >

Pre <explanation of al parameters>

Post <explanation of all output and return values >
*/

int function (int pl, float p2)

/I Local Definitions
[/l Statements
return value;

}

/* kkkkkkkkkkkkkx End of FUﬂCtIOﬂ kkkkkkkkkhkkkkkkk*k */

main

int main (void)
{
I/ Local Definitions
/] Start of program
< function cals only >
/I End of program
return O;

return

