Chapter 2

Processes and Threads

2.1 Processes

2.2 Threads

2.3 Interprocess communication
2.4 Classical IPC problems

2.5 Scheduling

sun@hit.edu.cn

Processes

o A process Is basically a running program
— What is the program?

e Single-process OS
— MS-DOS

e Multi-process OS
— Most OSes

sun@hit.edu.cn

Several processes run together

* Every process feels that the computer
belongs to itself.

— has 1ts own address space

e a list of memory locations from some minimum
(usually 0) to some maximum

— can input and output freely
— Is executed by CPU continually

o General speaking, a process Is running on
a virtual machine powered by OS.

sun@hit.edu.cn

CPU switch

e There is only ONE CPU which can run
only ONE Instruction at any instant.

e In fact, the CPU switches back and forth
from process to process.

One program counter

5 Four program counters
S rocess
E i switch —_—
B

A¢ B Y Ci DY

Process
> W O O

J Y

(a) (b) ()

sun@hit.edu.cn

Real-time Problem

e We can't forecast
— How long will the process run exactly
— When will one instruction run

* Thus, there iIs real-time scheduling
— Run the most important available process

sun@hit.edu.cn

Process Creation

* Principal events that cause process
creation
— System initialization
— Execution of a process creation system call
— User request to create a new process

e Technically, a new process Is created by
having an existing process execute a
process creation system call

sun@hit.edu.cn

Process Creation System Call
In POSIX

e #1nclude <sys/types.h>
#include <unistd.h>
pid t fork(void);

e #include <unistd.h>
InNt execve(const char *filename,
char *const argvl]],
char *const envpl]

)

sun@hit.edu.cn

fork() & execve()

o A stripped down shell:

while (TRUE) { /* repeat forever */
type prompt(); /* display prompt */
read _command(command, parameters)/* input from terminal */

iIT (fork() '=0) { /* fork off child process */
/* Parent code */
wartpid(-1, &status, 0); /* wait for child to exit */
} else {
/* Child code */
execve (command, parameters, 0); /* execute command */

}
}

sun@hit.edu.cn

Process Creation API
INWin32

e BOOL CreateProcess(

LPCTSTR IpApplicationName,

LPTSTR IpCommandLine,
LPSECURITY_ATTRIBUTES IpProcessAttributes,
LPSECURITY_ ATTRIBUTES IpThreadAttributes,
BOOL blnheritHandles,

DWORD dwCreationFlags,

LPVOID IpEnvironment,

LPCTSTR IpCurrentDirectory,

LPSTARTUPINFO IpStartuplinfo,

LPPROCESS INFORMATION IpProcessinformation

sun@hit.edu.cn

Process Termination

e Conditions which terminate processes

— Normal exit (voluntary)
e ex1t() and ExXi1tProcess()

— Error exit (voluntary)
— Fatal error (involuntary)

— Killed by another process (involuntary)
kil () and TerminateProcess()

sun@hit.edu.cn

10

Process Hierarchies

e Parent creates a child process, child
Drocesses can create its own process

 Forms a hierarchy
— UNIX/Linux calls this a ""process group™'

* Windows has no concept of process
hierarchy

— all processes are created equal

sun@hit.edu.cn 11

Process States (1)

1. Process blocks for input
2. Scheduler picks another process

3. Scheduler picks this process
4. Input becomes available

* Possible process states
— running (i247)
— blocked (FH2E)
— ready (Ft%8)
 Transitions between states are as shown

sun@hit.edu.cn 12

Process States (2)

Processes

Scheduler

o L_owest layer of process-structured OS
— handles interrupts, scheduling

o Above that layer are sec

sun@hit.edu.cn

uential processes

13

Implementation of Processes (1)

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Fields of a process table entry

sun@hit.edu.cn

14

Implementation of Processes (2)

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

/. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
Interrupt occurs

sun@hit.edu.cn 15

Threads (22 F%)

What does a process have?
— an address space

— other resources

— one thread

Thread has
— a program counter, registers, a stack

Processes are used to group resources together

Threads are the entities scheduled for
execution on the CPU

sun@hit.edu.cn

16

The Thread Model (1)

Process 1 Process 1 Process 1 Process

\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel

(a) (b)
(a) Three processes each with one thread
(b) One process with three threads

sun@hit.edu.cn 17

The Thread Model (2)

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

Items shared by all
threads in a process

sun@hit.edu.cn

Items private
to each thread

18

The Thread Model (3)

Thre d 2
Threzd 1 Th a0 3
ﬂ/ // hIBESES
Thread 4 s H-< Thread 3's stack
stack
Kernel

Each thread has its own stack

sun@hit.edu.cn

Multithreading

The threads take turns running

Every thread can access every memory
address within the process’ address space

Also running, blocked and ready

Threads can work together closely to
perform some task

— background work

sun@hit.edu.cn

20

System Call About Threads

#include <pthread.h>

Int pthread create(
pthread t* thread,
pthread attr t* attr,
void* (*start routine)(void*),
void* arg

);
void pthread exit(void* retval);
Int pthread cancel(pthread t thread);

void pthread_testcancel(void);

sun@hit.edu.cn

21

APl About Threads

#include <Winbase.h>

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES IpThreadAttributes,
SIZE_ T dwStackSize,
LPTHREAD START_ROUTINE IpStartAddress,
LPVOID IpParameter,
DWORD dwCreationFlags,
LPDWORD HIpThreadld

);
void ExitThread(DWORD dwExitCode);

BOOL TerminateThread(HANDLE hThread,
DWORD dwExitCode);

sun@hit.edu.cn

22

Why Thread?

* Processes can’t share many resources
e Easier to create and destroy

o Speed up the application
— More threads, more performance?

sun@hit.edu.cn

23

Thread Usage (1)

Fonr score and seven
yeus age, our fathers
bmught forth npon this
cantinent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men e created equal

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come
dedicate a portion of
that field as a final
Testing place for thoss
who here gane their

lives that this nation
might live, 1t s
altagether fitting and
puoper that we should
do this.

But, in a larger semse,
we cannot dedicate, we
cannot consecrats we
cannot hallow this
gound The bmve
men, living and dead,

who struggled here
have consecrated it, far
above omr poor power,
to add or detract. The
world will little note,
mr long remember,
what we say here, but
it can never forget
whatthey did here

1t is for 15 the living,
mther, 1o be dedicated

her to the unfinished
wotk which they who
fought here have ths
far so nobly advanced
1t is mther for s to be
hzre dedicated to the
great msk remaining
beforr we, that fom
these honared dead we
take increased devotion
1o that cause for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of fizedom
and thar government of
the people by the
peaple, for the people

8

~"

Keyboard

Kernel

A word processor with three threads

sun@hit.edu.cn

D

Is

Kk

24

Thread Usage (2)

Web server process

Dispatcher thread

- Worker thread
1l e

Web page cache

Kernel
Kernel space

Network
connection

A multithreaded Web server

sun@hit.edu.cn

Thread Usage (3)

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

sun@hit.edu.cn

26

Implementing Threads

e In user space
 In kernel

sun@hit.edu.cn

27

Implementing Threads Iin User Space

Process Thread
r \\ /
User
space<
=
s
Kernel
space Kernel
X
/ \
Run-time Thread Process
system table table

A user-level threads package

sun@hit.edu.cn 28

Implementing Threads in User Space

e Advantages

— Can be implemented on an OS that doesn’t
support thread

— No trap and context switch is needed for
scheduler

— Each process can have its own customized
scheduling algorithm

 Problems
— One thread is blocked, others are blocked too
— How to switch context?

sun@hit.edu.cn 29

Implementing Threads In the Kernel

Process Thread
Kernel
7/ A

Process

table

A threads package managed by the kernel

sun@hit.edu.cn

Thread
table

30

Implementing Threads in the Kernel

 Blocked thread doesn’t affect others
e More overhead

sun@hit.edu.cn

31

Hybrid Implementations

Multiple user threads
on a kernel thread

\

!

¥’

Kernel S S-‘— Kernel thread

User
> space

-/

Kernel
space

Multiplexing user-level threads onto

kernel-level threads

sun@hit.edu.cn

32

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2

%

Access (ermo set)

?

—~— Time

|

Open {(errno overwritten)

3

3

Errno inspected

Conflicts between threads over the use of a global variable

sun@hit.edu.cn 33

Interprocess Communication
Race Conditions

Spooler
directory

abc out=4

prog.c
prog.n

Two processes want to access shared memory at same time

~N OO O A~

sun@hit.edu.cn 34

Critical Regions (I A X))

 Mutual exclusion (B JFIL%)

— Some way of making sure that if one process
IS using a shared variable or file, the other
processes mustn’t use it

 Critical Region

— That part of the program where the shared
memory or file is accessed

— To avoid race, no two processes are ever in
their critical regions at the same time

sun@hit.edu.cn

35

Critical Regions

A enters critical region

/ A leaves critical region

Process A | I
I I I I
| I I |
| | Battemptsto B enters : B leaves
: : enter critical I critical region I critical region
region
| I I |
| I
Process B | |
o B~
! ! v ! !
I I B blocked I I
T, T Ty T

Time ———>

Mutual exclusion using critical regions

sun@hit.edu.cn 36

Four conditions

* Four conditions to provide mutual
exclusion
— No two processes simultaneously in critical
region
— No assumptions made about speeds or
numbers of CPUs

— No process running outside its critical region
may block another process

— No process must walit forever to enter Its
critical region

sun@hit.edu.cn

37

Disabling Interrupts

e Each process disable all interrupts just
after entering its critical region and re-
enable them just before leaving It

o With interrupts disabled,
— CPU will not be switched
— application can affect the whole system

* Only kernel can disable interrupts

sun@hit.edu.cn

38

|_ock Variables

e Basic idea
 iInt lock variable = O;

While (lock variable = 0)

lock varlable = 1;
critical _region();
lock variable = O,

sun@hit.edu.cn

39

Mutual Exclusion with Busy Waiting

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave _region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

enter_region();
critical _region();
leave region();

Entering and leaving a critical region using the
TSL Instruction

sun@hit.edu.cn 40

Sleep and Wakeup

#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce _item();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_item();
count = count — 1;
if (count ==
consume_item(item);

}

/* number of slots in the buffer */
/* number of items in the buffer */

/* repeat forever */

/* generate next item */

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer */

/* decrement count of items in buffer */

— 1) wakeup(producer); /* was buffer full? */

/* print item */

Producer-consumer (4= —H %) problem
with fatal race condition a1

Producer

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

{
int item;
while (TRUE) { /* repeat forever */
item = produce _item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */
}
}

sun@hit.edu.cn 42

consumer

void consumer(void)

{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove__item(); /* take item out of buffer */
count = count — 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume__item(item); /* print item */

sun@hit.edu.cn 43

Producer and Consumer

#define N 100
int count = 0;

void producer(void)

{
Int item; void consumer(void)
. {
item = produce _item(); ’
It (count == N) sleep(); while (TRUE) { ,
SR = COLIIL = Ty item = remove_item(); .
if (count == 1) wakeup(consumer); count = count — 1:
} if (count == N — 1) wakeup(producer).
} consume _item(item); |

sun@hit.edu.cn

44

PV Atomic Action and Semaphore
(PVIREBRIENGESE)

e down(int *sem) {
It (*sem == 0)
sleep();
(*sem)--;

}

e up(int *sem) {
(Frsem)++;
wakeup () ;

}

sun@hit.edu.cn

45

Semaphores

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)

{

int item;

while (TRUE) { /* TRUE is the constant 1 */

item = produce_item();

/* generate something to put in buffer */

down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

void consumer(void)

{

!

int item;

while (TRUE) {

/* infinite loop */

down(&full); /* decrement full count */
down(&mutex); /* enter critical region */

item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */

consume_item(item);

/* do something with the item */

The producer-consumer problem using semaphores

Semaphores

_ _ void consumer(void)
void producer(void) {

{ .
int item:; It ILET:

while (TRUE) { while (TRUE) {

item = produce_item():; down(&tull);
down(&empty): down(&mutex);
down(&mutex); item = remove_item();
insert_item(item); up(&mutex);
up(&mutex); up(&empty);

up(&full); consume _item(item);

} }
" }
mutex Is used to ensure only one process can

enter the critical region at the same time.
It is called binary semaphore (—~Jtf§ 5 &)

Mutexes (B JF81)

mutex _lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex__lock | try again later

ok: RET]| return to caller; critical region entered

mutex _unlock:

MOVE MUTEX, #0 | store a 0 in mutex
RET | return to caller

Implementation of mutex lock and mutex_unlock

sun@hit.edu.cn 48

API About Critical Region

VOID InitralizeCriticalSection(
LPCRITICAL _SECTION IpCriticalSection);

VOID EnterCriticalSection(
LPCRITICAL _SECTION IpCriticalSection);

BOOL TryEnterCriticalSection(
LPCRITICAL _SECTION IpCriticalSection);

VOID LeaveCriticalSection(
LPCRITICAL _SECTION IpCriticalSection);

VOID DeleteCriticalSection(
LPCRITICAL _SECTION IpCriticalSection);

sun@hit.edu.cn

49

API About Critical Region

HANDLE CreateMutex(
LPSECURITY ATTRIBUTES IpMutexAttrs,
BOOL blnitialOwner,
LPCTSTR IpName);

HANDLE OpenMutex(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR IpName);

DWORD WartForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds);

BOOL ReleaseMutex(HANDLE hMutex);
BOOL CloseHandle(HANDLE hObject);

sun@hit.edu.cn

50

API About Critical Region

HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTES IpSemaphoreAttributes,
LONG BInitiralCount,
LONG IMaximumCount,
LPCTSTR IpName);

HANDLE OpenSemaphore(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR IpName);

DWORD WartForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds);

BOOL ReleaseSemaphore(
HANDLE hSemaphore,
LONG IReleaseCount,
LPLONG IpPreviousCount);

BOOL CloseHandle(HANDLE hObject);

sun@hit.edu.cn

51

System Call About Critical Region

e pthread mutex_ t fastmutex =
PTHREAD MUTEX INITIALIZER;

e Int pthread mutex Init(
pthread mutex t *mutex,
const pthread mutexattr t *mutexattr);

e Int pthread mutex lock(
pthread mutex_t *mutex);

e Int pthread mutex trylock(
pthread mutex_t *mutex);

e Int pthread mutex unlock(
pthread mutex_t *mutex);

e Int pthread mutex destroy(
pthread mutex_t *mutex);

sun@hit.edu.cn

System Call About Critical Region

pthread cond t cond = PTHREAD COND INITIALIZER;

int pthread cond 1nit(
pthread cond t *cond,
pthread condattr_t *cond attr);

int pthread cond_signal(
pthread cond t *cond)

int pthread cond broadcast(
pthread cond_t *cond);

iInt pthread cond wart(
pthread cond t *cond,
pthread mutex_ t *mutex)

Int pthread cond_timedwailt(
pthread cond t *cond,
pthread mutex t *mutex,
const struct timespec *abstlme)

int pthread cond destroy(
pthread cond t *cond);

sun@hit.edu.cn

System Call About Critical Region

e Int semget(
key t key,
Int nsems,
int semflig

):

e Int semctl(
int semid,
Int semnum,
int cmd,
union arg

):

e Int semop(

int semid,

struct sembuf *sops,
unsigned nsops

):

e Int fcntl(

int fd,

int cmd,

struct fTlock *lock

):

sun@hit.edu.cn

54

Monitors (1)

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:

Example of a monitor

sun@hit.edu.cn

55

Monitors (2)

monitor ProducerConsumer

conditipn: 2, iy procedure producer,
) > €/MPLY begin

MILCEER B/ while true do
procedure insert(item: integer); begin

begin
if count = N then wait(full);
insert_item(item),

item = produce_item;
ProducerConsumer.insert(item)

end
count := count + 1; ,
: . end;
if count = 1 then signal(empty) ,
procedure consumer;
end; .
. : begin
function remove: integer, .
. while frue do
begin .
if count = 0 then wait(empty) begi
i = i .)
coun ¢ W? ERPEL. item = ProducerConsumer.remove,
remove = remove __item, : .
consume _item(item)
count ;= count — 1; aid
if count = N — 1 then signal(full) el
end; |
count :=0;

end monitor:;

e Outline of producer-consumer problem with monitors

— only one monitor procedure active at one time
— buffer has N slots sun@hit.edu.cn 56

Monitors (3)

public class ProducerConsumer {

static final int N = 100; // constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer();// instantiate a new consumer thread
static our_monitor mon = new our_monitor(); // instantiate a new monitor
public static void main(String args[]) {

p.start(); // start the producer thread

c.start(); /[start the consumer thread

}

static class producer extends Thread {

public void run() { // run method contains the thread code
int item;
while (true) { // producer loop

item = produce__item();
mon.insert(item);
}
}
private int produce_item(){ ...} // actually produce
}

static class consumer extends Thread {

public void run() { run method contains the thread code
int item;
while (true) { // consumer loop

item = mon.remove();
consume _item (item);

}
}

private void consume_item(int item) { ...} // actually consume
}

Solution to producer-consumer problem in Java (part 1)

sun@hit.edu.cn

57

Monitors (4)

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private int count = 0, lo = 0, hi = 0; // counters and indices
public synchronized void insert(int val) {

if (count == N) go_to_sleep(); //if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer
hi= (hi+ 1) % N; // slot to place next item in
count = count + 1; // one more item in the buffer now
if (count == 1) notify(); // if consumer was sleeping, wake it up
}
public synchronized int remove() {
int val;
if (count == 0) go_to_sleep(); //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+1)%N; // slot to fetch next item from
count = count — 1; // one few items in the buffer
if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val,

}
private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {}:}

}
H

Solution to producer-consumer problem in Java (part 2)
sun@hit.edu.cn 58

Message Passing

#define N 100

void producer(void)

{
int item;
message m;

while (TRUE) {
item = produce_item();
receive(consumer, &m);
build_message(&m, item);
send(consumer, &m);

}

void consumer(void)
{
int item, i;
message m;

/* number of slots in the buffer */

/* message buffer */

/* generate something to put in buffer */
/* wait for an empty to arrive */

/* construct a message to send */

/* send item to consumer */

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */

while (TRUE) {
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);
consume_item(item);

The producer-consumer problem with N messages

/* get message containing item */
/* extract item from message */
/* send back empty reply */

/* do something with the item */

sun@hit.edu.cn

Dining Philosophers (1)

Philosophers eat/think
Eating needs 2 forks =
Pick one fork at a time

How to prevent
deadlock

sun@hit.edu.cn

Dining Philosophers (2)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

A nonsolution to the dining philosophers problem

sun@hit.edu.cn 61

Dmmg Philosophers (3)

#define N /* number of philosophers */
#define LEFT (|+N 1)%N /* number of i’'s left neighbor */
#define RIGHT (i+1)%N /* number of i's right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]:; /* one semaphore per philosopher */
void philosopher(int i) /* 1. philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */

think(); /* philosopher is thinking */

take forks(i); /* acquire two forks or block */

eat(); /* yum-yum, spaghetti */

put_forks(i); /* put both forks back on table */

}
)
Solution to dining philosophers problem (part 1).

Dining Philosophers (4)

void take_forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}
void put_forks(i) /* 1. philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}

Solution to dining philosophers problem (part 2)

Dining Philosophers (5)

void test(i) /* 1. philosopher number, from 0 to N-1 */

{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {

state[i] = EATING;
up(&si]);

Solution to dining philosophers problem (part 3)

The Readers and Writers Problem

void reader(void)

{

while (TRUE) { void writer(void)
down(&mutex); {
rc=rc+1: while (TRUE) {
if (rc == 1) down(&db); think_up_data();
up(&mutex); down(&db);
read_data_base(); write _data_ base();
down(&mutex); up(&db);
rc=rc—1; !
if (rc == 0) up(&db);
up(&mutex); }

use data_read();

sun@hit.edu.cn 65

Scheduling (V&)

e Scheduler

— makes the choice about which process to run
next

e Scheduling algorithm
— 1s the algorithm used by scheduler

sun@hit.edu.cn 66

Process Behavior

@ | — — —— |

Long CPU burst \
Waiting for I/O
Short CPU burst \
() [{1 {1 {1 (] (1 [1 (] [1 {l (]
Time
—_—

o Bursts of CPU usage alternate with periods of 1/0
walt
— a CPU-bound process
— an 1/0O-bound process

sun@hit.edu.cn

67

When to Schedule

nen a new process Is created
nen a process exits

nen a process Is blocked

nen an 1/O Interrupt occurs

nen a hardware clock interrupt occurs
— Nonpreemptive
— Preemptive

S22

sun@hit.edu.cn

68

Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems

Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

sun@hit.edu.cn 69

Scheduling In Batch Systems

An example of first-come first-served

sun@hit.edu.cn

70

Scheduling In Batch Systems

8 4 4 4 4 4 4 8
A B C D B C D A
(a) (b)

An example of shortest job first scheduling

sun@hit.edu.cn 71

Scheduling In Batch Systems

> 4 111 4 111 2
Al B |C D{ E B |C D{ £ A
T (SJF, AVE:4.6) T (AVE:4.4)

2 1111 3
A |B/C|D|E| B,
(AVE:3.4)

C,Dand E arrive at 4

An example of shortest remaining time next

sun@hit.edu.cn 72

Scheduling In Interactive Systems

Current Next Current
process process process

N S h

B F D G A F D G A B

(@) (b)

 Round Robin Scheduling

— list of runnable processes

— list of runnable processes after B uses up its
guantum

sun@hit.edu.cn

Scheduling In Interactive Systems

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

A scheduling algorithm with four priority classes

sun@hit.edu.cn 74

Scheduling In Real-Time Systems

e The system must react to external events
within a fixed amount of time

— Hard real time
— Soft real time

e Events
— Periodic
— Aperiodic

sun@hit.edu.cn

75

Scheduling In Real-Time Systems

Schedulable real-time system
e Glven
— m periodic events

— event 1 occurs within period P; and requires
C; seconds

* Then the load can only be handled if

sun@hit.edu.cn

76

Thread Scheduling (1)

Process A Process B
Order in which l

threads run \

Y
2. Runtime 1 @2 (3
system
picks a —
thread — = B

4
L1 . Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

Possible scheduling of user-level threads
e 50-msec process quantum
e threads run 5 msec/CPU burst

sun@hit.edu.cn

Thread Scheduling (2)

Process A Process B

1 Kernel picks a thread

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

Possible scheduling of kernel-level threads

e 50-msec process quantum
e threads run 5 msec/CPU burst

sun@hit.edu.cn

78

	Processes and Threads
	Processes
	Several processes run together
	CPU switch
	Real-time Problem
	Process Creation
	Process Creation System Call�in POSIX
	fork() & execve()
	Process Creation API �inWin32
	Process Termination
	Process Hierarchies
	Process States (1)
	Process States (2)
	Implementation of Processes (1)
	Implementation of Processes (2)
	Threads (线程)
	The Thread Model (1)
	The Thread Model (2)
	The Thread Model (3)
	Multithreading
	System Call About Threads
	API About Threads
	Why Thread?
	Thread Usage (1)
	Thread Usage (2)
	Thread Usage (3)
	Implementing Threads
	Implementing Threads in User Space
	Implementing Threads in User Space
	Implementing Threads in the Kernel
	Implementing Threads in the Kernel
	Hybrid Implementations
	Making Single-Threaded Code Multithreaded
	Interprocess Communication�Race Conditions
	Critical Regions (临界区)
	Critical Regions
	Four conditions
	Disabling Interrupts
	Lock Variables
	Mutual Exclusion with Busy Waiting
	Sleep and Wakeup
	Producer
	Consumer
	Producer and Consumer
	PV Atomic Action and Semaphore�(PV原语操作和信号量)
	Semaphores
	Semaphores
	Mutexes (互斥锁)
	API About Critical Region
	API About Critical Region
	API About Critical Region
	System Call About Critical Region
	System Call About Critical Region
	System Call About Critical Region
	Monitors (1)
	Monitors (2)
	Monitors (3)
	Monitors (4)
	Message Passing
	Dining Philosophers (1)
	Dining Philosophers (2)
	Dining Philosophers (3)
	Dining Philosophers (4)
	Dining Philosophers (5)
	The Readers and Writers Problem
	Scheduling (调度)
	Process Behavior
	When to Schedule
	Scheduling Algorithm Goals
	Scheduling in Batch Systems
	Scheduling in Batch Systems
	Scheduling in Batch Systems
	Scheduling in Interactive Systems
	Scheduling in Interactive Systems
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Thread Scheduling (1)
	Thread Scheduling (2)

