
sun@hit.edu.cn 1

Processes and Threads

Chapter 2

2.1 Processes
2.2 Threads
2.3 Interprocess communication
2.4 Classical IPC problems
2.5 Scheduling

sun@hit.edu.cn 2

Processes

• A process is basically a running program
– What is the program?

• Single-process OS
– MS-DOS

• Multi-process OS
– Most OSes

sun@hit.edu.cn 3

Several processes run together

• Every process feels that the computer
belongs to itself.
– has its own address space

• a list of memory locations from some minimum
(usually 0) to some maximum

– can input and output freely
– is executed by CPU continually

• General speaking, a process is running on
a virtual machine powered by OS.

sun@hit.edu.cn 4

CPU switch

• There is only ONE CPU which can run
only ONE instruction at any instant.

• In fact, the CPU switches back and forth
from process to process.

sun@hit.edu.cn 5

Real-time Problem

• We can't forecast
– How long will the process run exactly
– When will one instruction run

• Thus, there is real-time scheduling
– Run the most important available process

sun@hit.edu.cn 6

Process Creation

• Principal events that cause process
creation
– System initialization
– Execution of a process creation system call
– User request to create a new process

• Technically, a new process is created by
having an existing process execute a
process creation system call

sun@hit.edu.cn 7

Process Creation System Call
in POSIX

• #include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

• #include <unistd.h>
int execve(const char *filename,

char *const argv[],
char *const envp[]

);

sun@hit.edu.cn 8

fork() & execve()
• A stripped down shell:

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt */
read_command(command, parameters)/* input from terminal */

if (fork() != 0) { /* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code */
execve (command, parameters, 0); /* execute command */

}
}

sun@hit.edu.cn 9

Process Creation API
inWin32

• BOOL CreateProcess(
LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

sun@hit.edu.cn 10

Process Termination

• Conditions which terminate processes
– Normal exit (voluntary)

•exit() and ExitProcess()

– Error exit (voluntary)
– Fatal error (involuntary)
– Killed by another process (involuntary)

•kill() and TerminateProcess()

sun@hit.edu.cn 11

Process Hierarchies

• Parent creates a child process, child
processes can create its own process

• Forms a hierarchy
– UNIX/Linux calls this a "process group"

• Windows has no concept of process
hierarchy
– all processes are created equal

sun@hit.edu.cn 12

Process States (1)

• Possible process states
– running (运行)
– blocked (阻塞)
– ready (就绪)

• Transitions between states are as shown

sun@hit.edu.cn 13

Process States (2)

• Lowest layer of process-structured OS
– handles interrupts, scheduling

• Above that layer are sequential processes

sun@hit.edu.cn 14

Implementation of Processes (1)

Fields of a process table entry

sun@hit.edu.cn 15

Implementation of Processes (2)

Skeleton of what lowest level of OS does when an
interrupt occurs

sun@hit.edu.cn 16

Threads (线程)

• What does a process have?
– an address space
– other resources
– one thread

• Thread has
– a program counter, registers, a stack

• Processes are used to group resources together
• Threads are the entities scheduled for

execution on the CPU

sun@hit.edu.cn 17

The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

sun@hit.edu.cn 18

The Thread Model (2)

Items shared by all
threads in a process

Items private
to each thread

sun@hit.edu.cn 19

The Thread Model (3)

Each thread has its own stack

sun@hit.edu.cn 20

Multithreading

• The threads take turns running
• Every thread can access every memory

address within the process’ address space
• Also running, blocked and ready
• Threads can work together closely to

perform some task
– background work

sun@hit.edu.cn 21

System Call About Threads

#include <pthread.h>

int pthread_create(
pthread_t* thread,
pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg

);

void pthread_exit(void* retval);

int pthread_cancel(pthread_t thread);

void pthread_testcancel(void);

sun@hit.edu.cn 22

API About Threads

#include <Winbase.h>

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

void ExitThread(DWORD dwExitCode);

BOOL TerminateThread(HANDLE hThread,
DWORD dwExitCode);

sun@hit.edu.cn 23

Why Thread?

• Processes can’t share many resources
• Easier to create and destroy
• Speed up the application

– More threads, more performance?

sun@hit.edu.cn 24

Thread Usage (1)

A word processor with three threads

sun@hit.edu.cn 25

Thread Usage (2)

A multithreaded Web server

sun@hit.edu.cn 26

Thread Usage (3)

Three ways to construct a server

sun@hit.edu.cn 27

Implementing Threads

• In user space
• In kernel

sun@hit.edu.cn 28

Implementing Threads in User Space

A user-level threads package

sun@hit.edu.cn 29

Implementing Threads in User Space

• Advantages
– Can be implemented on an OS that doesn’t

support thread
– No trap and context switch is needed for

scheduler
– Each process can have its own customized

scheduling algorithm
• Problems

– One thread is blocked, others are blocked too
– How to switch context?

sun@hit.edu.cn 30

Implementing Threads in the Kernel

A threads package managed by the kernel

sun@hit.edu.cn 31

Implementing Threads in the Kernel

• Blocked thread doesn’t affect others
• More overhead

sun@hit.edu.cn 32

Hybrid Implementations

Multiplexing user-level threads onto
kernel-level threads

sun@hit.edu.cn 33

Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a global variable

sun@hit.edu.cn 34

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

sun@hit.edu.cn 35

Critical Regions (临界区)

• Mutual exclusion (互斥现象)
– Some way of making sure that if one process

is using a shared variable or file, the other
processes mustn’t use it

• Critical Region
– That part of the program where the shared

memory or file is accessed
– To avoid race, no two processes are ever in

their critical regions at the same time

sun@hit.edu.cn 36

Critical Regions

Mutual exclusion using critical regions

sun@hit.edu.cn 37

Four conditions

• Four conditions to provide mutual
exclusion
– No two processes simultaneously in critical

region
– No assumptions made about speeds or

numbers of CPUs
– No process running outside its critical region

may block another process
– No process must wait forever to enter its

critical region

sun@hit.edu.cn 38

Disabling Interrupts

• Each process disable all interrupts just
after entering its critical region and re-
enable them just before leaving it

• With interrupts disabled,
– CPU will not be switched
– application can affect the whole system

• Only kernel can disable interrupts

sun@hit.edu.cn 39

Lock Variables

• Basic idea
• int lock_variable = 0;
……
thread()
{

……
while (lock_variable != 0)

;
lock_variable = 1;
critical_region();
lock_variable = 0;
……

}

sun@hit.edu.cn 40

Mutual Exclusion with Busy Waiting

Entering and leaving a critical region using the
TSL instruction

enter_region();
critical_region();
leave_region();

sun@hit.edu.cn 41

Sleep and Wakeup

Producer-consumer (生产者—消费者) problem
with fatal race condition

sun@hit.edu.cn 42

Producer

sun@hit.edu.cn 43

Consumer

sun@hit.edu.cn 44

Producer and Consumer

sun@hit.edu.cn 45

PV Atomic Action and Semaphore
(PV原语操作和信号量)

• down(int *sem) {
if (*sem == 0)

sleep();
(*sem)--;

}

• up(int *sem) {
(*sem)++;
wakeup();

}

sun@hit.edu.cn 46

Semaphores

The producer-consumer problem using semaphores

sun@hit.edu.cn 47

Semaphores

mutex is used to ensure only one process can
enter the critical region at the same time.

It is called binary semaphore (二元信号量)

sun@hit.edu.cn 48

Mutexes (互斥锁)

Implementation of mutex_lock and mutex_unlock

sun@hit.edu.cn 49

API About Critical Region

• VOID InitializeCriticalSection(
LPCRITICAL_SECTION lpCriticalSection);

• VOID EnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection);

• BOOL TryEnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection);

• VOID LeaveCriticalSection(
LPCRITICAL_SECTION lpCriticalSection);

• VOID DeleteCriticalSection(
LPCRITICAL_SECTION lpCriticalSection);

sun@hit.edu.cn 50

API About Critical Region

• HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpMutexAttrs,
BOOL bInitialOwner,
LPCTSTR lpName);

• HANDLE OpenMutex(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpName);

• DWORD WaitForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds);

• BOOL ReleaseMutex(HANDLE hMutex);
• BOOL CloseHandle(HANDLE hObject);

sun@hit.edu.cn 51

API About Critical Region

• HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG lInitialCount,
LONG lMaximumCount,
LPCTSTR lpName);

• HANDLE OpenSemaphore(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpName);

• DWORD WaitForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds);

• BOOL ReleaseSemaphore(
HANDLE hSemaphore,
LONG lReleaseCount,
LPLONG lpPreviousCount);

• BOOL CloseHandle(HANDLE hObject);

sun@hit.edu.cn 52

System Call About Critical Region

• pthread_mutex_t fastmutex =
PTHREAD_MUTEX_INITIALIZER;

• int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

• int pthread_mutex_lock(
pthread_mutex_t *mutex);

• int pthread_mutex_trylock(
pthread_mutex_t *mutex);

• int pthread_mutex_unlock(
pthread_mutex_t *mutex);

• int pthread_mutex_destroy(
pthread_mutex_t *mutex);

sun@hit.edu.cn 53

System Call About Critical Region

• pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
• int pthread_cond_init(

pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

• int pthread_cond_signal(
pthread_cond_t *cond);

• int pthread_cond_broadcast(
pthread_cond_t *cond);

• int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

• int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

• int pthread_cond_destroy(
pthread_cond_t *cond);

sun@hit.edu.cn 54

System Call About Critical Region

• int semget(
key_t key,
int nsems,
int semflg

);

• int semctl(
int semid,
int semnum,
int cmd,
union arg

);

• int semop(
int semid,
struct sembuf *sops,
unsigned nsops

);

• int fcntl(
int fd,
int cmd,
struct flock *lock

);

sun@hit.edu.cn 55

Monitors (1)

Example of a monitor

sun@hit.edu.cn 56

Monitors (2)

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time
– buffer has N slots

sun@hit.edu.cn 57

Monitors (3)

Solution to producer-consumer problem in Java (part 1)

sun@hit.edu.cn 58

Monitors (4)

Solution to producer-consumer problem in Java (part 2)

sun@hit.edu.cn 59

Message Passing

The producer-consumer problem with N messages

sun@hit.edu.cn 60

Dining Philosophers (1)

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time
• How to prevent

deadlock

sun@hit.edu.cn 61

Dining Philosophers (2)

A nonsolution to the dining philosophers problem

sun@hit.edu.cn 62

Dining Philosophers (3)

Solution to dining philosophers problem (part 1)

sun@hit.edu.cn 63

Dining Philosophers (4)

Solution to dining philosophers problem (part 2)

sun@hit.edu.cn 64

Dining Philosophers (5)

Solution to dining philosophers problem (part 3)

sun@hit.edu.cn 65

The Readers and Writers Problem

sun@hit.edu.cn 66

Scheduling (调度)

• Scheduler
– makes the choice about which process to run

next
• Scheduling algorithm

– is the algorithm used by scheduler

sun@hit.edu.cn 67

Process Behavior

• Bursts of CPU usage alternate with periods of I/O
wait
– a CPU-bound process
– an I/O-bound process

sun@hit.edu.cn 68

When to Schedule

• When a new process is created
• When a process exits
• When a process is blocked
• When an I/O interrupt occurs
• When a hardware clock interrupt occurs

– Nonpreemptive
– Preemptive

sun@hit.edu.cn 69

Scheduling Algorithm Goals

sun@hit.edu.cn 70

Scheduling in Batch Systems

An example of first-come first-served

sun@hit.edu.cn 71

Scheduling in Batch Systems

An example of shortest job first scheduling

sun@hit.edu.cn 72

Scheduling in Batch Systems

An example of shortest remaining time next

2 4 1 1 1

A B C D E

4 1 1 1 2

B C D E A

(SJF, AVE:4.6) (AVE:4.4)

2 1 1

B1 C

1 1 3

A D E B2

C, D and E arrive at
(AVE:3.4)

sun@hit.edu.cn 73

Scheduling in Interactive Systems

• Round Robin Scheduling
– list of runnable processes
– list of runnable processes after B uses up its

quantum

sun@hit.edu.cn 74

Scheduling in Interactive Systems

A scheduling algorithm with four priority classes

sun@hit.edu.cn 75

Scheduling in Real-Time Systems

• The system must react to external events
within a fixed amount of time
– Hard real time
– Soft real time

• Events
– Periodic
– Aperiodic

sun@hit.edu.cn 76

Scheduling in Real-Time Systems

Schedulable real-time system
• Given

– m periodic events
– event i occurs within period Pi and requires

Ci seconds
• Then the load can only be handled if

1

1
m

i

i i

C
P=

≤∑

sun@hit.edu.cn 77

Thread Scheduling (1)

Possible scheduling of user-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

sun@hit.edu.cn 78

Thread Scheduling (2)

Possible scheduling of kernel-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

	Processes and Threads
	Processes
	Several processes run together
	CPU switch
	Real-time Problem
	Process Creation
	Process Creation System Call�in POSIX
	fork() & execve()
	Process Creation API �inWin32
	Process Termination
	Process Hierarchies
	Process States (1)
	Process States (2)
	Implementation of Processes (1)
	Implementation of Processes (2)
	Threads (线程)
	The Thread Model (1)
	The Thread Model (2)
	The Thread Model (3)
	Multithreading
	System Call About Threads
	API About Threads
	Why Thread?
	Thread Usage (1)
	Thread Usage (2)
	Thread Usage (3)
	Implementing Threads
	Implementing Threads in User Space
	Implementing Threads in User Space
	Implementing Threads in the Kernel
	Implementing Threads in the Kernel
	Hybrid Implementations
	Making Single-Threaded Code Multithreaded
	Interprocess Communication�Race Conditions
	Critical Regions (临界区)
	Critical Regions
	Four conditions
	Disabling Interrupts
	Lock Variables
	Mutual Exclusion with Busy Waiting
	Sleep and Wakeup
	Producer
	Consumer
	Producer and Consumer
	PV Atomic Action and Semaphore�(PV原语操作和信号量)
	Semaphores
	Semaphores
	Mutexes (互斥锁)
	API About Critical Region
	API About Critical Region
	API About Critical Region
	System Call About Critical Region
	System Call About Critical Region
	System Call About Critical Region
	Monitors (1)
	Monitors (2)
	Monitors (3)
	Monitors (4)
	Message Passing
	Dining Philosophers (1)
	Dining Philosophers (2)
	Dining Philosophers (3)
	Dining Philosophers (4)
	Dining Philosophers (5)
	The Readers and Writers Problem
	Scheduling (调度)
	Process Behavior
	When to Schedule
	Scheduling Algorithm Goals
	Scheduling in Batch Systems
	Scheduling in Batch Systems
	Scheduling in Batch Systems
	Scheduling in Interactive Systems
	Scheduling in Interactive Systems
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Thread Scheduling (1)
	Thread Scheduling (2)

