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Processes and Threads

Chapter 2

2.1 Processes
2.2 Threads
2.3 Interprocess communication
2.4 Classical IPC problems
2.5 Scheduling
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Processes

• A process is basically a running program
– What is the program?

• Single-process OS
– MS-DOS

• Multi-process OS
– Most OSes
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Several processes run together

• Every process feels that the computer 
belongs to itself.
– has its own address space

• a list of memory locations from some minimum 
(usually 0) to some maximum

– can input and output freely
– is executed by CPU continually

• General speaking, a process is running on 
a virtual machine powered by OS.
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CPU  switch

• There is only ONE CPU which can run 
only ONE instruction at any instant.

• In fact, the CPU switches back and forth 
from process to process.
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Real-time Problem

• We can't forecast
– How long will the process run exactly
– When will one instruction run

• Thus, there is real-time scheduling
– Run the most important available process 
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Process Creation

• Principal events that cause process 
creation
– System initialization
– Execution of a process creation system call
– User request to create a new process

• Technically, a new process is created by
having an existing process execute a 
process creation system call
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Process Creation System Call
in POSIX

• #include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

• #include <unistd.h>
int execve(const char *filename,  

char *const argv[],
char *const envp[]

);
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fork() & execve()
• A stripped down shell:

while (TRUE) {                     /* repeat forever */
type_prompt( ); /* display prompt */
read_command(command, parameters)/* input from terminal */

if (fork() != 0) { /* fork off child process */
/* Parent code */
waitpid( -1, &status, 0);   /* wait for child to exit */

} else {
/* Child code */
execve (command, parameters, 0);   /* execute command */

}
}
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Process Creation API 
inWin32

• BOOL CreateProcess(
LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes, 
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

); 
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Process Termination

• Conditions which terminate processes
– Normal exit (voluntary)

•exit() and ExitProcess()

– Error exit (voluntary)
– Fatal error (involuntary)
– Killed by another process (involuntary)

•kill() and TerminateProcess()
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Process Hierarchies

• Parent creates a child process, child 
processes can create its own process

• Forms a hierarchy
– UNIX/Linux calls this a "process group"

• Windows has no concept of process 
hierarchy
– all processes are created equal
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Process States (1)

• Possible process states
– running (运行)
– blocked (阻塞)
– ready (就绪)

• Transitions between states are as shown



sun@hit.edu.cn 13

Process States (2)

• Lowest layer of process-structured OS
– handles interrupts, scheduling

• Above that layer are sequential processes
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Implementation of Processes (1)

Fields of a process table entry
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Implementation of Processes (2)

Skeleton of what lowest level of OS does when an 
interrupt occurs
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Threads (线程)

• What does a process have?
– an address space
– other resources
– one thread

• Thread has
– a program counter, registers, a stack

• Processes are used to group resources together
• Threads are the entities scheduled for 

execution on the CPU
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The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model (2)

Items shared by all 
threads in a process

Items private 
to each thread
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The Thread Model (3)

Each thread has its own stack
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Multithreading

• The threads take turns running
• Every thread can access every memory 

address within the process’ address space
• Also running, blocked and ready
• Threads can work together closely to 

perform some task
– background work
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System Call About Threads

#include <pthread.h>

int pthread_create(
pthread_t* thread,
pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg

);

void pthread_exit(void* retval);

int pthread_cancel(pthread_t thread);

void pthread_testcancel(void);
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API About Threads

#include <Winbase.h>

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

void ExitThread( DWORD dwExitCode );

BOOL TerminateThread(HANDLE hThread,
DWORD dwExitCode); 
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Why Thread?

• Processes can’t share many resources
• Easier to create and destroy
• Speed up the application

– More threads, more performance?
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Thread Usage (1)

A word processor with three threads
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Thread Usage (2)

A multithreaded Web server
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Thread Usage (3)

Three ways to construct a server
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Implementing Threads

• In user space
• In kernel
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Implementing Threads in User Space

A user-level threads package
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Implementing Threads in User Space

• Advantages
– Can be implemented on an OS that doesn’t 

support thread
– No trap and context switch is needed for 

scheduler
– Each process can have its own customized 

scheduling algorithm
• Problems

– One thread is blocked, others are blocked too
– How to switch context?
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Implementing Threads in the Kernel

A threads package managed by the kernel
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Implementing Threads in the Kernel

• Blocked thread doesn’t affect others
• More overhead
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Hybrid Implementations

Multiplexing user-level threads onto 
kernel-level threads
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Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a global variable
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Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time
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Critical Regions (临界区)

• Mutual exclusion (互斥现象)
– Some way of making sure that if one process 

is using a shared variable or file, the other 
processes mustn’t use it

• Critical Region
– That part of the program where the shared 

memory or file is accessed
– To avoid race, no two processes are ever in 

their critical regions at the same time
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Critical Regions

Mutual exclusion using critical regions
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Four conditions

• Four conditions to provide mutual 
exclusion
– No two processes simultaneously in critical 

region
– No assumptions made about speeds or 

numbers of CPUs
– No process running outside its critical region 

may block another process
– No process must wait forever to enter its 

critical region
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Disabling Interrupts

• Each process disable all interrupts just 
after entering its critical region and re-
enable them just before leaving it

• With interrupts disabled,
– CPU will not be switched
– application can affect the whole system

• Only kernel can disable interrupts
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Lock Variables

• Basic idea
• int lock_variable = 0;
……
thread()
{

……
while (lock_variable != 0)

;
lock_variable = 1;
critical_region();
lock_variable = 0;
……

}
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Mutual Exclusion with Busy Waiting

Entering and leaving a critical region using the 
TSL instruction

enter_region();
critical_region();
leave_region();
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Sleep and Wakeup

Producer-consumer (生产者—消费者) problem 
with fatal race condition
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Producer
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Consumer
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Producer and Consumer
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PV Atomic Action and Semaphore
(PV原语操作和信号量)

• down(int *sem) {
if (*sem == 0)

sleep();
(*sem)--;

}

• up(int *sem) {
(*sem)++;
wakeup();

}
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Semaphores

The producer-consumer problem using semaphores
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Semaphores

mutex is used to ensure only one process can 
enter the critical region at the same time.

It is called binary semaphore ( 二元信号量)
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Mutexes (互斥锁)

Implementation of mutex_lock and mutex_unlock
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API About Critical Region

• VOID InitializeCriticalSection(
LPCRITICAL_SECTION lpCriticalSection); 

• VOID EnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection); 

• BOOL TryEnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection); 

• VOID LeaveCriticalSection(
LPCRITICAL_SECTION lpCriticalSection); 

• VOID DeleteCriticalSection(
LPCRITICAL_SECTION lpCriticalSection); 



sun@hit.edu.cn 50

API About Critical Region

• HANDLE CreateMutex( 
LPSECURITY_ATTRIBUTES lpMutexAttrs, 
BOOL bInitialOwner, 
LPCTSTR lpName); 

• HANDLE OpenMutex( 
DWORD dwDesiredAccess, 
BOOL bInheritHandle, 
LPCTSTR lpName); 

• DWORD WaitForSingleObject( 
HANDLE hHandle, 
DWORD dwMilliseconds); 

• BOOL ReleaseMutex( HANDLE hMutex ); 
• BOOL CloseHandle( HANDLE hObject); 
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API About Critical Region

• HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, 
LONG lInitialCount, 
LONG lMaximumCount, 
LPCTSTR lpName); 

• HANDLE OpenSemaphore(
DWORD dwDesiredAccess, 
BOOL bInheritHandle, 
LPCTSTR lpName); 

• DWORD WaitForSingleObject( 
HANDLE hHandle, 
DWORD dwMilliseconds); 

• BOOL ReleaseSemaphore(
HANDLE hSemaphore, 
LONG lReleaseCount, 
LPLONG lpPreviousCount); 

• BOOL CloseHandle( HANDLE hObject ); 
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System Call About Critical Region

• pthread_mutex_t fastmutex =
PTHREAD_MUTEX_INITIALIZER;

• int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

• int pthread_mutex_lock(
pthread_mutex_t *mutex);

• int pthread_mutex_trylock(
pthread_mutex_t *mutex);

• int pthread_mutex_unlock(
pthread_mutex_t *mutex);

• int pthread_mutex_destroy(
pthread_mutex_t *mutex);



sun@hit.edu.cn 53

System Call About Critical Region

• pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
• int pthread_cond_init(

pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

• int pthread_cond_signal(
pthread_cond_t *cond);

• int pthread_cond_broadcast(
pthread_cond_t *cond);

• int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

• int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

• int pthread_cond_destroy(
pthread_cond_t *cond);



sun@hit.edu.cn 54

System Call About Critical Region

• int semget(
key_t key,
int nsems,
int semflg

);

• int semctl(
int semid,
int semnum,
int cmd,
union arg

);

• int semop(
int semid,
struct sembuf *sops,
unsigned nsops

);

• int fcntl(
int fd, 
int cmd,
struct flock *lock

);
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Monitors (1)

Example of a monitor
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Monitors (2)

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time
– buffer has N slots
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Monitors (3)

Solution to producer-consumer problem in Java (part 1)
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Monitors (4)

Solution to producer-consumer problem in Java (part 2)
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Message Passing

The producer-consumer problem with N messages
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Dining Philosophers (1)

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time 
• How to prevent 

deadlock 
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Dining Philosophers (2)

A nonsolution to the dining philosophers problem



sun@hit.edu.cn 62

Dining Philosophers (3)

Solution to dining philosophers problem (part 1)
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Dining Philosophers (4)

Solution to dining philosophers problem (part 2)
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Dining Philosophers (5)

Solution to dining philosophers problem (part 3)
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The Readers and Writers Problem
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Scheduling (调度)

• Scheduler
– makes the choice about which process to run 

next
• Scheduling algorithm

– is the algorithm used by scheduler
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Process Behavior

• Bursts of CPU usage alternate with periods of I/O 
wait
– a CPU-bound process
– an I/O-bound process
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When to Schedule

• When a new process is created
• When a process exits
• When a process is blocked
• When an I/O interrupt occurs
• When a hardware clock interrupt occurs

– Nonpreemptive
– Preemptive
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Scheduling Algorithm Goals
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Scheduling in Batch Systems

An example of first-come first-served
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Scheduling in Batch Systems

An example of shortest job first scheduling
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Scheduling in Batch Systems

An example of shortest remaining time next

2 4 1 1 1

A B C D E

4 1 1 1 2

B C D E A

(SJF, AVE:4.6) (AVE:4.4)

2 1 1

B1 C

1 1 3

A D E B2

C, D and E arrive at
(AVE:3.4)
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Scheduling in Interactive Systems

• Round Robin Scheduling
– list of runnable processes
– list of runnable processes after B uses up its 

quantum
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Scheduling in Interactive Systems

A scheduling algorithm with four priority classes
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Scheduling in Real-Time Systems

• The system must react to external events 
within a fixed amount of time
– Hard real time
– Soft real time

• Events
– Periodic
– Aperiodic
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Scheduling in Real-Time Systems

Schedulable real-time system
• Given

– m periodic events
– event i occurs within period Pi and requires 

Ci seconds
• Then the load can only be handled if

1

1
m

i

i i

C
P=

≤∑
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Thread Scheduling (1)

Possible scheduling of user-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst



sun@hit.edu.cn 78

Thread Scheduling (2)

Possible scheduling of kernel-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst
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