Chapter 3

Deadlocks

3.1. Resource

3.2. Introduction to deadlocks

3.3. The ostrich algorithm

3.4. Deadlock detection and recovery
3.5. Deadlock avoidance

3.6. Deadlock prevention

3.7. Other issues

sun@hit.edu.cn

Resources

Examples of computer resources
— printers

— tape drives

— tables

Processes need access to resources in
reasonable order

Suppose a process holds resource A and
requests resource B

— at same time another process holds B and requests
A

— both are blocked and remain so forever

sun@hit.edu.cn

Resources (1)

e Deadlocks occur when ...

— processes are granted exclusive access to
devices, files, and so forth

— we refer to these objects generally as
resources

 Preemptable resources

— can be taken away from a process with no ill
effects

 Nonpreemptable resources
— will cause the process to fail if taken away

sun@hit.edu.cn

Resources (2)

e Sequence of events required to use a
resource

1.request the resource
2.use the resource
3.release the resource

e Must wait if request iIs denied
— requesting process may be blocked
— may fail with error code

sun@hit.edu.cn

Resource Acquisition

typedef int semaphore; typedef int semaphore;
semaphore resource _1; semaphore resource_1;
semaphore resource_2,;

void process_A(void) { void process_A(void) {
down(&resource _1); down(&resource _1);
use_resource_1(); down(&resource _2);
up(&resource _1); use_both_resources();
} up(&resource _2);

up(&resource _1);

(a) (b)

 Using a semaphore to protect resources.

sun@hit.edu.cn

Resource Acquisition

semaphore resource_1; semaphore resource _1;

semaphore resource_2; semaphore resource_2;

void process _A(void) { void process _A(void) {
down(&resource _1); down(&resource _1);
down(&resource _2); down(&resource _2);
use_both_resources(); use_both_resources();
up(&resource _2); up(&resource _2);
up(&resource _1); up(&resource _1);

} }

void process _B(void) { void process _B(void) {
down(&resource _1); down(&resource _2);
down(&resource _2); down(&resource _1);
use_both_resources(); use_both_resources();
up(&resource _2); up(&resource _1);
up(&resource _1); up(&resource _2);

} }

 Which has a potential deadlock?

sun@hit.edu.cn

Introduction to Deadlocks

e Formal definition :

A set of processes Is deadlocked if each process
In the set Is waiting for an event that only
another process in the set can cause

e Usually the event is release of a currently
held resource

* None of the processes can ...
— run
— release resources
— be awakened

sun@hit.edu.cn

=

w

s

Four Conditions for Deadlock

Mutual exclusion condition

each resource assigned to 1 process or is available
Hold and wait condition

process holding resources can request additional

No preemption condition

previously granted resources cannot forcibly
taken away

Circular walit condition
must be a circular chain of 2 or more processes

each is waiting for resource held by next member
of the chain

sun@hit.edu.cn

Deadlock Modeling (2)

 Modeled with directed graphs

o B o

T U

A

(a) (b) (c)

— resource R assigned to process A
— process B Is requesting/waiting for resource S

— process C and D are in deadlock over resources T and
U sun@hit.edu.cn

Deadlock Modeling (3)

Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R
(a) (b) (c)

1. Arequests R

2. Brequests S . @ @

3. Crequests T e e e

4. Arequests S

5. Brequests T

6. Crequests R R S T R S T R S T

deadlock

(d) (e) () (9)

AC

NN

(h) (i)
Q)

How deadlock occurs

Deadlock Modeling (4)

1. Arequests R

2. Crequests T . @ . " . @

3. Arequests S ﬂq) e e e T
R T

4. C requests R
5. Areleases R
6. Areleases S

no deadlock

() () (m) (n)

S| [T R||[S R [s||T

(0) © @)
How deadlock can be avoided

Deadlock Modeling (5)

Strategies for dealing with Deadlocks
just ignore the problem altogether
>, detection and recovery

. dynamic avoidance
careful resource allocation

prevention
e negating one of the four necessary conditions

=

>

sun@hit.edu.cn

The Ostrich Algorithm

Pretend there iIs no problem

Reasonable if
— deadlocks occur very rarely
— cost of prevention is high

UNIX and Windows takes this approach

It Is a trade off between
— convenience
— correctness

sun@hit.edu.cn

Detection with One Resource of Each Type (1)
T
©—[s]—@)—[}— G —[r—
O O G G
SR S B S

(a) (b)

* Note the resource ownership and requests

* A cycle can be found within the graph, denoting
deadlock

sun@hit.edu.cn

Detection with One Resource of Each Type (2)

Resources in existence

Current allocation matrix

(E,,E,, E,, ..., E.)

Row n is current allocation

Request matrix

Resources available
(A1 7 A2: A3:

LA

Ci,y Cypp Cy3 - Gy R,y Ry Ry o Ry
21 22 23 “om R, 22 23~ Ry
Cn2 CnS Cnm_ _Rn1 an RnS T an_

Row 2 is what process 2 needs

to process n

Data structures needed by deadlock detection algorithm

sun@hit.edu.cn

Detection with One Resource of Each Type (3)

e e
h‘iﬁ & @E’@ -:)6@ Ssk & ﬁe’@ 06:
@ & & @ &
& 8 P P @ QS P
E={(4 2 3 1) A=(2 2 2 0)
Current allocation matrix Request matrix

An example for the deadlock detection algorithm

sun@hit.edu.cn

Detection with One Resource of Each Type (3)

e " S : " "
O & @ N O & @ L
P K o P P o
& QX g7 G & N g7 G
E=(4 2 3 1) A=(2 1 0 Q)
Current allocation matrix Request matrix
0 0 1 0 2 0 0 1
cC=12 0 0 1 R=]11 0 1 0O
g 1 2 0 2 1 01

An example for the deadlock detection algorithm

sun@hit.edu.cn

Recovery from Deadlock (1)

* Recovery through preemption
— take a resource from some other process
— depends on nature of the resource
e Recovery through rollback
— checkpoint a process periodically
— use this saved state
— restart the process if it is found deadlocked

sun@hit.edu.cn

Recovery from Deadlock (2)

* Recovery through killing processes

— crudest but simplest way to break a
deadlock

— kill one of the processes in the deadlock cycle
— the other processes get Its resources

— choose process that can be rerun from the
beginning

sun@hit.edu.cn

Deadlock Avoidance
Resource Trajectories

® u (Both processes
finished)

Plotter I5 f
r |
----.
I s
1
1
i
p q I |2 I3 |4

Printer —= =
=y » Plotter

TwO process resource trajectories

sun@hit.edu.cn

Safe and Unsafe States (1)

Has Max Has Max Has Max Has Max Has Max
3 9 Al 3 9 Al 3 9 Al 3 9 Al 3 9
2 4 B | 4 4 Bl O | - BJ]O — Bl O -
2 7 C| 2 7 cC| 2 7 C| 7 Fi C|lo]| -

Free: 3 Free: 1 Free:5 Free: 0 Free:7

(a) (b) (c) (d) (e)

Demonstration that the state in (a) Is safe

sun@hit.edu.cn

Safe and Unsafe States (2)

Has Max Has Max Has Max Has Max

3 9 4 9 4 9 4 9

2 4 B 2 4 B 4 4 B — | —

2 i 2 7 2 7 2 7
Free: 3 Free: 2 Free: 0 Free: 4

(a) (b) () (d)

Demonstration that the sate in b 1S not safe

sun@hit.edu.cn

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
A]lo]|®6 Al 1] 6 Al1] 6
Blo |5 B| 1] 5 Bl 2|5
clo]| 4 cl|l2]| 4 cla2]4
D|o | 7 D| 4| 7 D| 4| 7

Free: 10 Free: 2 Free: 1
(a) (b) (€)
 Three resource allocation states
— safe
— safe
— unsafe

sun@hit.edu.cn

Banker's Algorithm for Multiple Resources

P & O N O® P & QQ} 0§§

0" o & & S

F LS P F&LF P&
QT G O T AR &5 O
Al13]|]0]|1]1 Aj1|1]0|O0 E = (6342)
Blof[1]0o]o Blo[1]1]2 ifgfggg;
cpi1l11|1]o C|3|(1]0{|0
Dy1|(1]0]1 DJo|0]1]0
EJO0O|O0]|]0]|O E1]2]|1]|1]0
Resources assigned Resources still needed

Example of banker's algorithm with multiple resources

sun@hit.edu.cn

Deadlock Prevention
Attacking the Mutual Exclusion Condition

* Some devices (such as printer) can be
spoolec

— only the printer daemon uses printer
resource

— thus deadlock for printer eliminated
* Not all devices can be spooled
* Principle:

— avolid assigning resource when not absolutely
necessary

— as few processes as possible actually claim
the resource

sun@hit.edu.cn

Attacking the Hold and Walit
Condition

« Require processes to request resources before

starting
— a process never has to wait for what it needs

* Problems
— may not know required resources at start of run
— also ties up resources other processes could be using

e Variation:
— process must give up all resources
— then request all immediately needed

sun@hit.edu.cn

Attacking the No Preemption Condition

* This is not a viable option

e Consider a process given the printer
— halfway through its job

— now forcibly take away printer
— 17?7

sun@hit.edu.cn

Attacking the Circular Wait Condition (1)

1. Imagesetter
2. Scanner

3. Plotter

4. Tape drive

5. CD Rom drive

(a)

@

n

(b)

 Numerically ordered resources

e A resource graph

sun@hit.edu.cn

Summary of approaches to deadlock

prevention
Condition Approach
Mutual exclusion | Spool everything
Hold and wait Request all resources initially
No preemption Take resources away
Circular wait Order resources numerically

sun@hit.edu.cn

