

Software Architect Bootcamp

Raphael Malveau
Thomas J. Mowbray
Publisher: Prentice Hall PTR
First Edition October 13, 2000
ISBN: 0-13-027407-0, 352 pages

Software Architecture Bootcamp is your hands-on "field
manual" for becoming a great software architect! This
hands-on "field manual" gives developers the essential skills
they need to survive and thrive as software architects!
You’ll find insightful, real-world coverage of everything from
design patterns to prototyping, business case development
to leadership. Leading software architects Raphael Malveau
and Thomas Mowbray share profound insights and practical
solutions for all the key challenges of architectures using
objects, components, and distributed Internet computing,
showing how to avoid time-consuming pitfalls and costly
errors. You’ll master proven methods for:
Identifying the best architectural model for any project
Executing heavyweight or lightweight approaches to
software architecture Addressing scalability and long-term
business flexibility Making the most of abstraction,
refactoring, and architectural prototyping Leveraging
superior design patterns to improve your implementations
With hands-on exercises, real-life war stories, and a take-
no-prisoners attitude, Software Architect Bootcamp won’t
just help you become a great software architect: it’ll help
you become a true technical leader of your organization.

$
$

buy

Downloading

Reading

web

Distribution

Good book?Yes

Fast
Network?Yes

No

IT-SC
If you want to print, use fit to page.

IT-SC 1

Library of Congress Cataloging-in-Publication Data

Malveau, Raphael C.
Software architect bootcamp/Raphael Malveau, Thomas J. Mowbray.
p.cm.
Includes bibliographical references and index.
ISBN 0-13-027407-0
1. Software engineering. 2. Computer architecture. I. Mowbray, Thomas J. II. Title.
QA76.758 .M27 2001
005.1--dc21
2001021243
© 2001 Prentice Hall PTR
Prentice-Hall, Inc.
Upper Saddle River, NJ 07458
Prentice Hall books are widely used by corporations and government agencies for
training, marketing, and resale.
The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact Corporate Sales Department, phone: 800-382-3419;
fax: 201-236-7141; e-mail: corpsales@prenhall.com
Or write: Prentice Hall PTR, Corporate Sales Department, One Lake Street, Upper
Saddle River, NJ 07458
All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.
All product names mentioned herein are the trademarks or registered trademarks of their
respective owners.
Printed in the United States of America
10 9 8 7 6 5 4 3

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

IT-SC 2

Credits

Editorial/Production Supervision:

Faye Gemmellaro

Acquisitions Editor:

Paul Petralia

Marketing Manager:

Bryan Gambrel

Editorial Assistant:

Justin Somma

Cover Design:

Alamini Design

Cover Design Director:

Jerry Votta

Buyer:

Maura Zaldivar

INSPIRATION
"All we know is only a handful of what we don't
know."
—Hindu Proverb
This book is dedicated to our families:
Carrie Malveau
and
Kate Mowbray, CPA

IT-SC 3

Preface
 Acknowledgments

one Introduction
 1.1 Advice for Software Architects
 1.2 Software Architecture as a Discipline
 1.3 Design Patterns and Software Architecture
 1.4 Conclusions
 1.5 Exercises

two Software Architecture: Basic Training
 2.1 Software Paradigms
 2.2 Open Systems Technology
 2.3 Client Server Technology
 2.4 Software Application Experience
 2.5 Technology and Application Architecture
 2.6 Applying Standards to Application Systems
 2.7 Distributed Infrastructures
 2.8 Conclusions
 2.9 Exercises

three Software Architecture: Going to War
 3.1 Software Architecture Paradigm Shift
 3.2 Doing Software Wrong
 3.3 Doing Software Right: Enterprise Architecture Development
 3.4 Bottom Line: Time, People, and Money
 3.5 Conclusions
 3.6 Exercises

four Software Architecture: Drill School
 4.1 Architecture versus Programming
 4.2 Managing Complexity Using Architecture
 4.3 Systems Integration
 4.4 Making the Business Case
 4.5 Architecture Linkage to Software Development
 4.6 Architectural Software Notation
 4.7 Conclusions
 4.8 Exercises

five Leadership Training
 5.1 Leadership Is a Necessary, Learnable Skill
 5.2 The Architect as Team Builder
 5.3 Always Insist on Excellence in Deliverables
 5.4 Architect's Walkthrough
 5.5 Conclusions
 5.6 Exercises

six Software Architecture: Jump School
 6.1 Process
 6.2 Creating New Processes
 6.3 Teamwork
 6.4 Conclusions
 6.5 Exercises

IT-SC 4

seven Communications Training
 7.1 Communications Challenges
 7.2 Responsibility–Driven Development
 7.3 Communication Responsibilities
 7.4 Handling Feedback
 7.5 Exercises

eight Software Architecture: Intelligence Operations
 8.1 Architecture Mining
 8.2 Architecture Iteration
 8.3 Architecture Judgment
 8.4 Conclusions
 8.5 Exercises

nine Software Architecture: Psychological Warfare
 9.1 Alternative Learning
 9.2 Internal Control
 9.3 Expectation Management
 9.4 Psychology of Truth
 9.5 Perception Is Not Reality
 9.6 Exploiting Human Weaknesses
 9.7 Example: Reference Selling
 9.8 Psychology of Ownership
 9.9 Psychological Akido
 9.10 Intellectual Akido
 9.11 Conclusions
 9.12 Exercises

A. Architecture Example: Test Results Reporting System
 A.1 Introduction
 A.2 Component Interoperability Challenge
 A.3 Target Architecture for the TRRS
 A.4 Target Enterprise Viewpoint
 A.5 Target Information Viewpoint
 A.6 Target Technology Viewpoint
 A.7 Prototype Implementation
 A.8 Prototype Computational Viewpoint
 A.9 TRRS Terminology
 A.10 Use Case Definitions
 A.11 Core Workflows
 A.12 Information Model
 A.13 Conclusions

B. Design Templates and Examples
 B.1 Conceptual Design
 B.2 Relationship Service Conceptual Design
 B.3 High-Level Design
 B.4 Relationship Service High-Level Design

C. Glossary of Software Architecture Terminology
 Glossary

IT-SC 5

D. Acronyms

E. Bibliography
 Bibliography

IT-SC 6

Preface

Software architecture is an emerging discipline and an exciting career path for software
professionals. We encourage both new and experienced practitioners to read this book as
an aid to becoming better software architects. You may have noticed that most software
books today do not say much about software architecture. Here, in this volume, we've
concentrated the knowledge that you need to be the most effective architect possible.

As co-authors, we have lived through the experience of graduating from "member of
technical staff" developers to becoming practicing software architects at the most senior
levels of our respective companies. We are technical people, not managers, and we enjoy
the technical nature of our work. We enjoy parity of salary and benefits with the senior
managers at our respective firms. In other words, we are none-the-worse-for-wear as a
consequence of choosing a software architecture career. We think that many of our
readers would like to gain from our experience. Hence this book.

This is more than a book about software architecture. It is a field manual that can train
you. We choose the pseudomilitary style, because it embodies an essential attitude. As a
software architect, you need many survival skills— some technical, some political, some
personal. While neither author has mili- tary experience, we have seen software
architecture become a battleground in many ways. It is a battleground of ideas, as
developers compete to forward their own concepts. It is a battleground for control of key
design decisions that may be overruled by managers or developers, perhaps covertly. It is
a battleground with many risks, since architects are responsible for a much wider range of
technical and process risks than most managers or individual developers.

If you are a practicing software architect, we know that you are a busy professional. After
buying this book, we would suggest that you peruse the table of contents and the index
for topics that are new to you. Focus on those sections first. When you have time, we
suggest that you attempt a cover-to-cover read-through, to familiarize yourself with all of
the covered topics and terminology.

If you are new to architecture and want to become a software architect, we suggest that
you do a cover-to-cover read-through beginning with the first chapter. Work the exercises
provided, which will add an experiential learning element to your experience base.

Raphael Malveau

Thomas J. Mowbray, Ph.D.

McLean, Virginia, U.S.A.

IT-SC 7

Acknowledgments

We would like to express our thanks for all of the generous support of our friends and the
technical contributions of our fellow software architects. In particular, we wish to
recognize: Jan Putman, Kirstie Bellman, Liz Zeisler, Thad Scheer, Marc Sewell, Laura
Sewell, Hernan Astudillo, Theresa Smith, Roger Hebden, Chip Schwartz, Jack and
Gillian Hassall, John Eaton, Dr. Amjad Farooq, John Holmes, John Weiler, Kevin Tyson,
Kendall White, Chibuike Nwaeze, Dave Dikel, David Kane, John Williams, Bhavani
Thuraisingham, Jim Baldo, Eric Stein, John Hetrick, Dave Gregory, John Bentley, Nigel
Pates, Richard Taylor-Carr, Dan Lam, Garrett Fuller, David Broudy, Mike Baba, Burt
Ellis, Matthew Presley, Robert Davis, Peter Lee, Linda Kemby, Georgene Murray,
Alfredo Aunon, Jim Gray, and Woody Lewis.

IT-SC 8

Chapter one Introduction

So you want to become a software architect? Or perhaps you are already a software
architect, and you want to expand your knowledge of the discipline? This is a book about
achieving and maintaining success in your software career. It is also about an important
new software discipline and technology, software architecture. It is not a book about
getting rich in the software business; our advice helps you to achieve professional
fulfillment. Although the monetary rewards are substantial, often what motivates many
people in software architecture is being a continuous technical contributor throughout
their career. In other words, most software architects want to do technically interesting
work, no matter how successful and experienced they become. So the goal of this book is
to help you achieve career success as a software architect and then maintain your success.

In this book we cover both heavyweight and lightweight approaches to software
architecture. The role of software architect has many aspects: part politician, part
technologist, part author, part evangelist, part mentor, part psychologist, and more. At the
apex of the software profession, the software architect must understand the viewpoints
and techniques of many players in the IT business. We describe the discipline and
process of writing specifications, what most people would consider the bulk of software
architecture, but we also cover those human aspects of the practice which are most
challenging to architects, both new and experienced.

So what does a software architect do? A software architect both designs software and
guides others in the creation of software. The architect serves both as a mentor and as the
person who documents and codifies how tradeoffs are to be made by other software
designers and developers. It is common to see the architect serve as a trainer,
disciplinarian, and even counselor to other members of the development team. Of course,
leadership by example will always remain the most effective technique in getting
software designers and developers on the same page.

1.1 Advice for Software Architects

" Success is easy; maintaining success is difficult. "—J.B.

If you have a focus for your career, gaining the knowledge you need in order to advance
can be relatively easy. For software professionals, simply building your expertise is all
that is needed in most corporate environments. For example, we often ask software
people what books they have read. In the West, most professionals are familiar with
design patterns (see Section 1.3). And many have purchased the book by Erich
Gamma and co-authors that established the field of design patterns [Gamma 94]. Some
have even read it. However, it always surprises us how few people have read anything
further on this important topic.

For software architect books, the situation is even worse. Possibly the reason is that there
are fewer popular books, but more likely it is that people are not really focused on
software architecture as a career goal. In this book series, by publishing a common body

IT-SC 9

of knowledge about software architecture theory and practice, we are eliminating the first
obstacle to establishing a software architecture profession. However, making this
information available does not automatically change people's reading habits.

So, if the average software professional only reads about one book per year, just think
what you could do in comparison. If you were to read three books on design patterns, you
would have access to more knowledge than the vast majority of developers on that
important topic. In our own professional development, we try even harder—at least a
book each month, and if possible, a book every week. Some books take longer than a
week—for example, the 1000-page book on the Catalysis Method [D'Souza 98]. In our
opinion, it contains breakthroughs on component-oriented thinking, but so few people are
likely to read it thoroughly (except software architects), that it becomes a valuable
intellectual tool for making you (the reader) a thought leader, as the entire industry moves
through the difficult transition to component-based development.

" Particularly for social systems, it's the perceptions, not the facts, that count " [Rechtin
97].

Getting ahead on book reading is a clearcut way to differentiate yourself from the
software masses. Converting your book learning to real-world success is also
straightforward. You can apply your knowledge on your current projects. You can
convert your knowledge into briefings and tutorials that put you in visible leadership and
teaching roles. You can share you knowledge at conferences and professional groups.
And you can write. The key transition that leads to success starts with sharing your
knowledge one-to-one (i.e., inefficiently) and proceeding to share with many at a time. In
our own careers, when we began to share knowledge in one-to-many situations, the
appearance of success came with it. Since, for most people, appearance is reality, success
is easy to attain. The much more difficult challenge is maintaining success, once you've
achieved it.

Word of Caution

The software architecture career path is a difficult one for many reasons. While becoming
a competent software architect can be difficult, maintaining your skills is usually even
harder. Here are some key reasons why the architecture career is difficult:

Nascent Body of Knowledge

Confusion and Gurus

Professional Jealousy

The Management Trap

The Software Crisis

We discuss each of these in the subsections that follow.

Nascent Body of Knowledge

IT-SC 10

First of all, the body of software architecture knowledge is not well established. Software
architecture is a relatively new field of computer science. Not much software architecture
is taught in schools. Academics have not yet sorted out the fundamentals; there is still
much discussion and disagreement on the basics.

However, many practicing software architects believe that sufficient knowledge does
exist. The practice of software architecture is much more mature than many will admit.
Hopefully, you will gain this understanding, too, after reading further.

In the absence of widespread agreement about software architecture theory, you have to
be your own expert. You have to acquire your own set of knowledge and a strong set of
beliefs about how to do software right. No one book or software method will give you
everything that you need to be an effective software architect.

" Technical problems become political problems " [Rechtin 97].

Confusion and Gurus

Many published software approaches claim to provide the benefits of software
architecture, but most of them can't deliver on their promises. In fact, the software
industry has created many technology fads and trends, on the basis of incomplete
principles. When these approaches are applied in practice, software projects fail. And
guess what? The overwhelming majority of corporate development projects do fail—by
being cancelled, from overspending, or for underdelivery.

These failures are characteristic of a vast corporate software market, populated with
companies that are struggling to deliver their internal software. New products and
software development ideas are constantly being produced, in a never-ending attempt to
meet the needs of the struggling software masses. Consequently, despite all the failures,
the software products industry has thrived.

As a software architect, you have to be an evangelist and leader for your software team.
From the myriad conflicting software approaches and productsyou need to sort out what
works and what does not. This is not easy, because a tremendous onslaught of marketing
information generated by vendors and industry experts tends to contradict your
architectural messages. It is your fate to have your architectural decisions frequently
contradicted and obsolesced by the commercial software industry. One of your key skills
as an architect is to make sound decisions that can survive the ravages of time and
commercial innovation.

Professional Jealousy

IT-SC 11

The more successful you become, the more some people will resent your success. Many
software professionals are genuinely nice people. But many people in our profession have
large egos. We all have egos that can be abrasive, but whether you intend to compete on
the basis of ego or not, professional competition can create serious problems in software
organizations and in your career, unless you are careful.

" Challenge the process and solution, for surely someone else will "
[Rechtin 97].
Professional jealousy is a factor that you will have to watch for vigilantly. You must learn
to conduct yourself with a certain degree of humility and be prepared to defend yourself
when necessary. Never take any comment personally; it's always a mistake. Consider a
situation where you are meeting someone for the first time and they appear to be acting
quite rudely. In the eyes of people who have known them for an extended period of time,
they may very well be acting in their usual manner.

The Management Trap

As you become more successful in your software career, you may be joining the ranks of
management, since most companies organize around a single management ladder. If you
are good at what you do, it is natural for management to want you to mentor and
supervise other people doing it, too. The company can try to get the productivity of
several good performers based upon your experience.

As your administrative responsibilities increase, your time to perform technical work can
decrease dramatically. Because you spend less time on technical tasks and on maintaining
your technical skills, you can lose your technical edge. If you chose a software career
because you enjoyed technical work, you can lose one of your most important
motivations for your work.

Being a software architect is quite different from being a manager. A software architect is
a direct technical contributor, whereas a manager contributes indirectly by coordinating
the actions of other people. Together, managers and architects make highly effective
leadership teams. In our experience, combining the two roles can work only temporarily.

As you advance as a manager, eventually a superior will tell you to stop touching the
keyboard (i.e., programming).

You as a software architect can avoid becoming a manager if you establish a personal
professional policy. If you don't want management duties, you must learn how to say so.
For many of us, one of the most difficult transitions is learning how to say "No." For
example, you have to avoid lateral promotions that lead to management and
administrative roles.

In some organizations you will become trapped in a management role, because the
company does not have a technical ladder. At a certain level of seniority (typical of
software architects), you may be surprised, one day, to find yourself assigned
responsibilities on the management organization chart. Once this is decided, it is very
hard to reverse. The best approach is to declare your expectations (e.g., for technical
assignments) when you first take the job. And repeat your policy often.

IT-SC 12

Defining Software Architecture

An increasing number of software professionals are claiming the title: software architect.
In our opinion, very few of these people understand what software architecture is.

Have you ever been involved in a discussion of the question: "What is architecture?" The
term "architecture" is one of those most often misused. Below we describe one of the
common misuses; then we answer the question "What is architecture?" with a conceptual
standard that is in widespread use today (see Section 1.2).

Misuse of the Term "Architecture"

Too often, architectures are used as sales tools rather than technical blueprints. In a
typical scenario, a fast-talking technical manager (the "architect") presents a few high-
level viewgraphs to convince you of the greatness of his product or system. This is a
presentation of a marketing architecture. Most marketing architectures are directed
externally at customers and not at software developers. Marketing architectures are fine
for advertising the features of commercial products, but they provide only limited
technical information for developers.

The problem with marketing architectures is that they are decoupled from the
development process. The so-called architect is a manager who delegates most technical
details to individual developers. Unless the architect manages the computational model
(including subsystem interfaces), the architecture is unlikely to deliver any real technical
benefits. Architectural benefits that are easily compromised include system adaptability
(for new business needs) and system extensibility (for exploitation of new technologies).

Despite the many competing definitions, experts emphasize the importance of
architecture, especially for component-based applications. As component reuse and
software complexity increase, architecture is growing dramatically in importance. In
subsequent sections we discuss several architecture-centered approaches, which support
business change, technology innovation, and design reuse. Reuse of architectural designs
benefits component reuse, because design reuse is often much more effective than
software reuse alone.

Before Architecture

High-quality, flexible software is one goal of architecture-centered development. In
recent years, popular development approaches assumed that bad software is better. In
other words, getting software delivered quickly is better than delivering quality software
which supports change and reuse. Well-known process models and vendor regimes are
founded on the bad-is-better principle.

Architecture-centered approaches accommodate reuse and change more effectively,
because there is a planned system organization, specifically designed for these purposes,
i.e., the system architecture. In our opinion, the practice of software architecture is
essential for component-based development. Bad is better was the thesis; software
architecture is the antithesis.

IT-SC 13

Of course, we do not want to lose the inherent benefit of bad is better, i.e., rapid delivery.
Architecture-centered approaches utilize several techniques, including pragmatism,
architecture planning, and architecture reuse, which jointly support increased productivity,
reduced risk, and minimum time-to-market.

The Software Crisis

Many of us have serious misconceptions about the capabilities of current software
approaches. Based upon surveys of corporate software projects in the United States, the
realities of software development are as follows [Brown 98]. About one-third of all
software projects are cancelled. Average projects expend twice as much budget and
schedule as initially planned. After delivery, the majority of systems are considered
unsuccessful because they have far fewer capabilities than expected. Modification and
extension of systems are the most expensive cost drivers and very likely to create new
defects. Overall, virtually all application software projects produce stovepipe
systems, brittle software architectures that underperform on requirements.

The software crisis in corporate development became apparent decades ago, when
procedural software technologies were popular. Subsequent, object-oriented approaches
(such as the Object Modeling Technique) have been equally unsuccessful for corporate
developers. These outcomes have been repeatedly confirmed by research [Brown 98].

Three key factors are exacerbating the software crisis:

requirements change

commercial innovation

distributed computing

A significant part of the problem is rising user expectations. User requirements for
systems have increased much faster than corporate developers' capability to deliver.
Requirements changes are more frequent, as businesses maneuver for competitive
advantage with strategic corporate software.

Another confounding factor is the destabilizing force of accelerating technology
innovation, in both commercial software and hardware platforms. Corporate developers
have difficulty finding compatible configurations of software products and are forced to
upgrade configurations frequently as new products are released. Software maintenance
due to technology upgrades is a significant corporate cost driver.

Owing to predominance of the Internet and geographically diverse enterprises, distributed
computing is an essential feature of many new applications. Traditionally, software
designers assumed homogeneous configurations, centralized systems, local
communications, and infrequent failures. Today's highly distributed enterprises require
heterogeneous hardware/software, decentralized legacy configurations, and complex
communications infrastructure. The resulting computing environments have frequent
partial system failures. Distributed computing reverses many key assumptions that are the
basis for procedural and object-oriented software development.

IT-SC 14

The software industry has established object orientation (OO) as the mainstream
technology. OO is the technology adopted by new corporate development projects
because it is universally supported by software tool vendors. Masses of legacy
programmers are training for object-oriented development (e.g., C++ and the Java
programming language) as corporations create new strategic systems. Unfortunately,
these developers and corporations are likely to become the next generation of
disillusioned participants in the software crisis. However, the organizations that survive
and thrive with this technology, must use it in sophisticated new ways, represented by
componentware.

1.2 Software Architecture as a Discipline

As a professional discipline, software architecture has at least a dozen schools of thought.
Some of the major schools of thought include:

Zachman Framework [Zachman 97]

Open Distributed Processing (ODP) [ISO 96]

Domain Analysis [Rogers 97]

Rational's 4+1 View Model [Booch 98]

Academic Software Architecture [Bass 98]

Alternative architecture approaches share concepts and principles, but their terminologies
differ greatly. Each architecture school is relatively isolated from the others. In the
literature of any given school, perhaps one or two other schools are acknowledged,
however briefly. None of the schools appear to make any significant use of the results of
the others. Since the terminology between these groups varies significantly,
communication is difficult, especially between practitioners using different architecture
approaches. Upon further study, we find that the goals of each school are quite similar,
and each school has some unique value to offer.

In addition to these schools, there are many vendor-driven approaches that are tied to
specific product lines, such as Netscape ONE, Sun Enterprise JavaBeans, and Microsoft
BackOffice. In fact, every vendor appears to have a unique architectural vision for the
future founded upon its own product lines.

Many vendors actually have minimal understanding of application architecture. Thus, I
focus here on those approaches which consider key application drivers with appropriate
product support for underlying capabilities.

Architecture Approaches

Here is a brief tour of the major schools of software architecture thought.

Zachman Framework

IT-SC 15

Derived from IBM research and practice, the Zachman Framework is a traditional
architecture approach; i.e., it is decidedly non-OO. The Zachman Framework is a
reference model comprising 30 architecture viewpoints. The reference model is a matrix,
which intersects two paradigms: journalism (who, what, when, why, where, and how) and
construction (planner, owner, builder, designer, subcontractor). Architects choose from
among these viewpoints to specify a system architecture.

Open Distributed Processing

A formal standard from ISO and ITU (telecommunications), Open Distributed Processing
(ODP) defines a five-viewpoint reference model (enterprise, information, computational,
engineering, and technology). ODP defines a comprehensive set of terminology, a
conformance approach, and viewpoint correspondence rules for traceability. The product
of seven years of standards work, ODP is a recent adoption that fully supports OO and
component-based architecture. In fairness, I should note that ODP is my primary
approach to software architecture.

Domain Analysis

A process for the systematic management of software reuse, domain analysis transforms
project-specific requirements into more general domain requirements for families of
systems. The requirements then enable the identification of common capabilities, which
are used as the basis for horizontal frameworks and reusable software architectures. An
important capability of this approach is the definition of robust software designs, which
are relatively resistant to requirements and context changes.

4+1 View Model

A four-viewpoint approach is under development by Rational Software. The viewpoints
include: logical, implementation (formerly "component"), process (i.e., runtime), and
deployment. The "+1" denotes use case specifications supporting requirements capture.
This approach is closely aligned with the Unified Modeling Language and the Unified
Process.

Academic Software Architecture

Academic software architecture comprises a community of computer science researchers
and educators constituting an academic field. Their educational efforts are focused on
basics and fundamentals. In their research contributions, this community avoids proven
architectural standards and practices in order to achieve originality, theoretical formality,
and other academic goals.

Common Principles

It is often said that the principles of software are simple. For example, let's consider (1)
simplicity and (2) consistency. Architects agree that managing complexity (i.e., achieving
simplicity) is a key goal, because it leads to many architectural benefits, such as system

IT-SC 16

adaptability and reduced system cost. For example, a simpler system is easier to test,
document, integrate, extend, and so forth.

" Explore the situation from more than one point of view. A seemingly impossible
situation might become transparently simple " [Rechtin 97].

Simplicity is most necessary in the specification of the architecture itself. Most
architectural approaches utilize multiple viewpoints to specify architecture. Viewpoints
separate concerns into a limited set of design forces, which can be resolved in a
straightforward and locally optimal manner.

Consistency enhances system understanding and transfer of design knowledge between
parts of the system and between developers. An emphasis on consistency contributes to
the discovery of commonality and opportunities for reuse. Architects agree that
unnecessary diversity in design and implementation leads to decidedly negative
consequences, such as brittle system structure.

Architecture Controversies

The principal disagreements among architecture schools include: (1) terminology, (2)
completeness, and (3) a priori viewpoints.

Architects disagree on terminology due to their backgrounds or schools of thought. For
example, when discussing software interfaces, the consistency principle is variously
called: standard interfaces, common interfaces, horizontal interfaces, plug-and-play
interfaces, and interface generalization. We can also argue that variation-centered
design (from design patterns) and component substitution are largely based upon
consistent interface structure.

Unnecessary diversity of terminology leads to confusion, and sometimes to proprietary
advantage. Some vendors and gurus change terminology so frequently that keeping up
with their latest expressions becomes a time-consuming career.

Differences in terminology lead to miscommunication. In contrast, some distinct areas of
disagreement among architecture schools can't be resolved through improved
communications alone.

The notion of complete models is promoted by legacy OO approaches (e.g., OMT), the
Zachman Framework school, and various others. These groups have promoted a vision
that complete models (describing multiple phases of development) are a worthwhile goal
of software development projects. Other schools would argue that multiple models are
not maintainable, that unnecessarily detailed models are counterproductive, and that
architectural significance should be considered when selecting system features for
modeling.

These contrary notions can be summarized in terms of the principle of pragmatism. We
side with the pragmatists for the above reasons and because most software systems are
too complex to model completely (e.g., multithreaded distributed computing systems).

IT-SC 17

Pragmatism is a key principle to apply in the transition from document-driven to
architecture-centered software process.

The selection of architecture viewpoints is a key point of contention among architecture
schools. Some schools have preselected a priori viewpoints. Some schools leave that
decision to individual projects. The Zachman Framework is an interesting case, because it
proposes 30 viewpoints, from among which most projects select groups of viewpoints to
specify.

Variable viewpoints have the advantage that they can be tailored to address the concerns
of particular system stakeholders. Predefined viewpoints have the advantage that they can
accompany a stable conceptual framework and a well-defined terminology, as well as
predefined approaches for resolving viewpoint consistency and architecture conformance.

Innovative Software Architecture

There are many active and successful schools of software architecture thought. Software
architecture is a discipline unified by principles, but divided by terminology. The various
architecture schools can be viewed as different branches of an evolutionary progression.

The Zachman Framework has evolved from the traditional non-OO approaches. ODP is
an outgrowth from object-oriented and distributed-computing paradigms that has
achieved stability, multiindustry acceptance, and formal standardization. Both Zachman
and ODP approaches have enjoyed significant success in production-quality software
development. Domain analysis has demonstrated its worth in defining robust, domain-
specific software architectures for reuse. The 4+1 View Model is an approach undergoing
development, in parallel with the Unified Process.

All of the above can be described as innovative software architecture approaches. They
are being applied in practice, based upon various levels of proven experience. Academic
research in software architecture is defining a baseline for architecture knowledge that
resembles a lowest common denominator of the above approaches. Fortunately, the
academic community has legitimized the role of the software architect, regardless of
whether their guidance is useful to innovative architects.

In our opinion, software architects should have a working knowledge of the innovative
approaches described above. In addition, they should utilize one of the product-quality
architecture frameworks in daily practice. Component architecture development is a
challenging area, requiring the best of stable conceptual frameworks supporting sound
architectural judgment.

The Architecture Paradigm Shift

The nature of information systems is changing from localized departmental application to
large-scale global and dynamic systems. This trend is following the change in business
environments toward globalization. The migration from relatively static and local

IT-SC 18

environments to highly dynamic information technology environments presents
substantial challenges to the software architect (Figure 1.1).

Figure 1.1. Virtual Enterprise Paradigm Shift

A majority of information technology approaches are based upon a set of traditional
assumptions (Figure 1.2). In these assumptions the system comprises a homogeneous
set of hardware and software which is known at design time. A configuration is relatively
stable and is managed from a centralized system management configuration.
Communications in traditional systems are relatively predictable, synchronous, and local.
If the state of the system is well known at all times and the concept of time is unified
across all the activities, another key assumption is that failures in the system are
relatively infrequent and, when they do occur, are monolithic. In other words, either the
system is up or the system is down.

Figure 1.2. Traditional and Distributed-Systems Assumptions

IT-SC 19

In the building of distributed application systems, most of the assumptions are reversed.
In a distributed multiorganizational system it is fair to assume that the hardware and
software configuration is heterogeneous. The reason is that different elements of the
system are purchased during different time frames by different organizations and many of
the decisions are made independently. Therefore in a typical configuration you have a
variety of information technology. It is also the case that hardware and software
configurations are evolving. Occurring within any organization are turnover in employees
and evolution of business processes. The architecture of the organization impacts the
architecture of the information technology. As time progresses, new systems are installed,
systems are moved, new software is acquired, and so on. When multiple organizations are
involved, these processes proceed relatively independently, and the architect must
accommodate the diverse evolving set of configurations.

In distributed systems, the assumption is that there is remote processing at multiple
locations. Some of this remote processing is on systems that were developed
independently and therefore have their own autonomous concept of control flow. This
reverses the assumption of localized and unified processing resources. There are some
interesting implications for the concepts of state and time. The state of a distributed
system is often distributed itself. The state information may need to be replicated in order
to provide efficient reliable access at multiple locations. It is possible for the distributed
state to become nonuniform in order to get into error conditions where the replicated state
does not have the desired integrity and must be repaired. The concept of time-distributed
systems is affected by the physics of relativity and chaos theory. Electrons are traveling
near the speed of light in distributed communication systems. In any large system there is
a disparity between the local concepts of time, in that this system can only have an
accurate representation of partial ordering of operations in the distributed environment.
The total ordering of operations is not possible because of the distances between
information process. In addition, distributed communications can get quite variable and
complex. In a distributed system there are various qualities of service which
communications systems can provide. The communications can vary by timeliness of
delivery, the throughput, the levels of security and vulnerability to attack, the reliability
of communications, and other factors. The communications architecture must be
explicitly designed and planned in order to account for the variabilities in services.

Finally, the distributed system has a unique model of failure modes. In any large
distributed system components are failing all the time. Messages are corrupted and lost,
processes crash, and systems fail. These kinds of failures happen frequently and the
system must be architected to accommodate for them.

In summary, distributed processing changes virtually all of the traditional system
assumptions that are the basis for most software engineering methodologies,
programming languages, and notations. To accommodate this new level of system
complexity, architects have three new needs.

First, architects need the ability to separate complex concerns, in particular to separate
concerns about business-application functionality from concerns about distributed-system
complexity. Distributed computing is a challenging and complex architectural

IT-SC 20

environment unto itself. If systems are built with traditional assumptions, architects and
developers are likely to spend most of their time combating the distributed nature of real-
world applications. Problems and challenges of distributed computing have nothing to do
fundamentally with business-application functionality.

The purpose of information technology is to establish new business processes. By
separating concerns, we can focus on the business functionality that is the true purpose of
the information system. Ideally, architects would like to separate distributed-system
issues into categories of design, where the majority of components are purchasable as
commodity communication infrastructure.

Object-oriented architects also need the ability to future-proof the information systems
that they are planning. It is important to accommodate commercial technology evolution,
which we know is accelerating and beginning to provide substantial challenges for
architects and developers. Future-proofing also requires the ability to adapt to new user
requirements, since requirements do change frequently and account for a majority of
system software cost over the life cycle. It is important to plan information systems to
support the likely and inevitable changes that users will require in order to conduct
business.

A third need for object-oriented architects is the ability to increase the likelihood of
system success. Corporate developers to date have had a very poor track record of
creating successful systems. The object-oriented architect is responsible for planning
systems with the maximum probability of delivering success and key benefits for the
business. Through proper information technology planning, we believe that it is possible
to increase the likelihood of system delivery on time and on budget.

In confronting these three needs, authorities in software engineering and computer
science tend to agree that architecture is the key to system success. Authorities in areas
ranging from academia to commercial industry are declaring that software architecture is
essential to the success and management of information systems. There is a long and
growing list of software authorities who have come to this conclusion. Unfortunately, it is
not always clear to everyone what software architecture truly is. In order to provide
clarification, we need to take a look at some of the reference models which provide
definitions of software and systems architecture (Figure 1.3).

Figure 1.3. Software-Intensive Systems Architecture Reference Models

IT-SC 21

The needs that we are discussing have been thoroughly considered by many authorities.
There are two leading meta-architecture frameworks that guide the development of
software system architecture. One of the popular frameworks originated at IBM and is
called the Zachman Framework. The Zachman Framework predated the popularity of
object orientation and took the perspective of separating data from process. In the
Zachman Framework there are six information system viewpoints as well as five levels of
design abstraction. The original Zachman Framework published in 1987 contained
viewpoints for the network, the data, and the process of the information system [Zachman
97]. A subsequent revision introduced three additional viewpoints. The current
framework resembles the set of traditional journalistic questions, which include who,
what, when, why, where, and how. Each viewpoint in the Zachman Framework answers a
chief set of questions to ensure that a complete system engineering architecture is created.

The Zachman Framework formed a matrix of architecture descriptions which are also
organized in terms of levels. There are five levels of description above the information
system implementation. They range from architectural planning done by individual
programmers at the finest grain to the overall enterprise requirements from the investors'
perspective of the information system. In total, the Zachman Framework identifies 30
architectural specifications, which provide a complete description of the information
system. In practice no real-world project is capable of creating these 30 or more detailed
plans and keeping them all in synchronization. When the Zachman Framework is applied,
systems architects partition the viewpoint into various categories and create architectural
specifications that cover all of the different Zachman descriptions without having to
create the large number of specification documents that the Zachman Framework implies.
One example is a very successful architecture initiative by the United States Department
of Defense called the C4ISR architecture framework, where C4ISR stands for Command
and Control, Computers, Communication, Intelligence Surveillance, and Reconnaissance.
The C4ISR architecture framework is used to describe DOD information technology at
the highest echelons of the organization. The primary benefit in this case is that different

IT-SC 22

service organizations and agencies can communicate their architectural plan through
common-viewpoint description.

Beyond the Zachman Framework, object-oriented architects have discovered additional
needs for defining computational architecture and other viewpoints which are not obvious
applications of the Zachman principles. The international standards organization (ISO)
has also considered these architectural issues. Recently completed is the ISO reference
model for open distributed processing called RM-ODP. This model belongs to a category
of ISO standards called open distributed processing (ODP). ODP is an outgrowth of
earlier work by ISO in open systems interoperability. The Open Systems Interconnection
(OSI) seven-layer reference model identified an application layer which provided
minimal structure and guidance for the development of application systems. In fact, the
seventh layer for applications groups remote procedure calls, directory services and all
other forms of application level services within the same architectural category, not
defining any particular structure or guidance for this significant category of functionality.

A Standard for Architecture

Among the various architecture approaches, there is a useful international standard that
defines what information systems architecture means, the Reference Model for Open
Distributed Processing (RM-ODP) [ISO 96]. We will cover it as one way to think about
software architecture. This model is representative of mature software architecture
practice today.

RM-ODP defines five essential viewpoints for modeling systems architecture:

Enterprise Viewpoint

Information Viewpoint

Computational Viewpoint

Engineering Viewpoint

Technology Viewpoint

The five viewpoints provide a comprehensive model of a single information system.

An enterprise viewpoint contains models of business objects and policies. Enterprise
policies include permissions, prohibitions, and obligations. An information viewpoint
includes the definition of information schemas as objects. Three kinds of RM-ODP
schemas include static, invariant, and dynamic. A computational viewpoint includes
definitions of large-grained object encapsulations, including subsystem interfaces and
their behaviors. These three viewpoints define architecture in a manner that makes
distributed computing transparent. An engineering viewpoint exposes the distributed
nature of the system. The distribution transparencies supported by infrastructure are
declared explicitly. The allocation of objects onto processing nodes is also specified. RM-
ODP defines a reference model of distributed infrastructure called a channel which is
used to model all forms of middleware connections.

IT-SC 23

RM-ODP defines eight distribution transparency properties. It is interesting to note that
only a handful of these properties are supported by major commercial infrastructures
(without resorting to niche-market products). For example, CORBA products provide full
support for access, location, and transaction transparency, with some support for failure
and persistence transparency. Microsoft's Distributed Component Object Model (DCOM)
provides support for persistence and transaction transparency, with limited support for the
other properties.

Open distributed processing and its reference model are the result of ten years of formal
standardization work at ISO. The reference model for open distributed processing is
object oriented. It provides a referenced model that was intended to address three
fundamental goals: (1) to provide a standard framework for further work and additional
detailed standards under the open distributed processing initiative, (2) to provide a set of
common terminology and concepts that could be applied for the development of product
and application systems for open distributed processing, (3) to provide a guideline for
object-oriented architects to specify software systems. This third purpose is directly
relevant to the day-to-day practices of systems architects.

Open distributed processing includes several other standards which are significant
(Figure 1.3). In particular, it has adopted the interface definition language from
CORBA as a notation for a specified computational architecture. It also has a standard for
the trader service, which is the key directory service supporting the discovery of
application functions in distributed systems. The trader service has subsequently been
adopted as a commercial standard through the object management group. The group's
object management architecture is a commercial specialization of open distributed
processing.

All together, the OMG's consensus standards and the ISO open distributed processing
form a set of software architecture standards that are useful intellectual tools for most
software architects and developers.

RM-ODP has three completed standards documents. Part one of the standards is a non-
normative overview and summary of the overall concepts and terminology. All three
parts of the adopted standard are cosponsored by the International Telecommunications
Union ITU-T through their X.900 series. The cosponsorship of both ISO and ITU-T
represents a broad international consensus on this guideline for object-oriented
architecture.

Part two of the standard is the foundations document, comprising a glossary of standard
terminology for object oriented distributed systems.

Part three of the standards is the architecture document. It defines the various viewpoints
for object-oriented architecture along with their structuring rules and various open
distributed processing functions which enable distributed computing.

Altogether, these three standards documents comprise less than 200 pages of
documentation with the normative parts, part two and part three comprising about 100

IT-SC 24

pages. Even though this is a relatively short standard, it provides a great deal of valuable
information. Many ISO standards are relatively inscrutable to the practicing software
engineer; this standard is no exception. However, we believe that the effort to understand
it is very worthwhile, given the challenges of distributed computing in business process
change that need to be resolved.

Who supports RM-ODP? RM-ODP is the product of formal standards bodies including
ISO and IEEE. The IEEE is an accredited standards organization reporting to ISO;
therefore, the IEEE is a voting participant and joint supporter of RM-ODP as well. RM-
ODP is the formal standards basis for the object management group's object management
architecture and all of the resulting technologies that the group has adopted which form
the basis for distributed object computing and technologies that are available
commercially. RM-ODP is also accurately used in several mission-critical industries
which depend upon information technology for their income. In particular, RM-ODP is
applied across the telecommunications industry through the telecommunications
information network architecture consortium, and RM-ODP is actively used by
telecommunication companies such AT&T, Lucent, and Nortel. In the
telecommunications industry, information technology is their business, and distributed
information systems success is essential to maintaining their competitive advantage.

Also applying ODP actively is the financial services industry. Companies such as Merrill
Lynch, Morgan Stanley, and various mortgage lending organizations are applying RM-
ODP to define new information systems concepts. The deployment of new information
technologies is becoming one of the key competitive advantages that these companies
have for creating new market channels to distribute and transact new financial
instruments and securities, and perform other financial services. For these industries
failure of information systems directly affects bottom-line profitability and is usually not
an option. If these influential companies accept this architectural approach and apply it
actively, can your organization afford not to consider its benefits?

The RM-ODP comprises five standard viewpoints. Each viewpoint is a perspective on a
single information system (Figure 1.4). The set of viewpoints is not closed, so that
additional viewpoints can be added as the needs arise. Another of their purposes is to
provide information descriptions that address the questions and needs of particular
stakeholders in the system. By standardizing five viewpoints, RM-ODP is claiming that
these five stakeholder perspectives are sufficient for resolving both business functionality
and distributed systems issues in the architecture and design of information systems. RM-
ODP is an elegant model in the sense that it identifies the top priorities for architectural
descriptions and provides a minimal set of traceability requirements which are adequate
to ensure system integrity.

Figure 1.4. Architecture Viewpoint Perspectives

IT-SC 25

The enterprise viewpoint of our RM-ODP takes the perspective of a business model. The
enterprise models should be directly understandable by managers and end users in the
business environment. The enterprise viewpoint ensures that business needs are satisfied
through the architecture and provides a description which enables validation of these
assertions with the end users.

The information viewpoint defines the universe of discourse in the information system.
The perspective is similar to the design information generated by a database modeler. The
information viewpoint is a logical representation of the data and processes on data in the
information system.

Each of the five RM-ODP viewpoints is object oriented, and they provide a complete
model of the system from the given perspective. The information viewpoint is an object-
oriented logical model of the information assets in the business and how these assets are
processed and manipulated.

The computational viewpoint partitions the system into software components which are
capable of supporting distribution. It takes the perspective of a designer of application
program interfaces for componentware. The computational viewpoint defines the
boundaries between the software elements in the information system. Generally, these
boundaries are the architectural controls that ensure that the system structure will embody
the qualities of adaptability in management of complexity that are appropriate to meet
changing business needs and incorporate the evolving commercial technology.

The engineering viewpoint of RM-ODP exposes the distributed nature of the system. Its
perspective is similar to that of an operating system engineer who is familiar with the

IT-SC 26

protocol stacks and allocation issues that are necessary to define the distributed
processing solutions for the information system.

The fifth viewpoint is the technology viewpoint. It defines the mappings between the
engineering objects and other architected objects to specific standards and technologies
including product selections. The viewpoint is similar to that of a network engineer who
is familiar with the protocol standards and products available commercially which are
appropriate selections to configure the information system.

All five RM-ODP viewpoints are co-equal in the sense that they do not form levels of
description; rather each viewpoint provides a complete model of the information system
that is object oriented and corresponds to the other viewpoints. Each defines various
constraints on the design of the information system that provide various architectural
benefits for each of the system's stakeholders. The RM-ODP viewpoints enable the
separation of concerns which divide the business and logical functionality of the system
from the distributed computing and commercial technology decisions of the architecture.

The first three viewpoints identify informational and computational characteristics. The
enterprise and information viewpoints are purely logical views of the business,
represented as object-oriented models (Figure 1.5). The computational viewpoint is
independent of the distribution of software modules, but it must define computational
boundaries which are enabled for distribution. The CORBA IDL notation for specifying
computational interfaces is appropriate for this purpose. IDL provides a way to define
computational interfaces which are independent of the distribution and deployment issues
in enterprise development. The first four viewpoints—enterprise, information,
computational, and engineering—are independent of specific implementations. In other
words, the majority of the architectural design is independent of the specific product
selections which configure the system. This property of RM-ODP enables the evolution
of technology components without impacting the overall architectural constraints defined
in the first four viewpoints. The engineering viewpoint defines qualities of service and
distribution transparencies which evolving technology selections must support. The
terminology of RM-ODP assists in providing concise descriptions of these technology
requirements.

Figure 1.5. Characteristics of Architecture Viewpoints

IT-SC 27

RM-ODP contains many terminology definitions which are useful concepts for object-
oriented architects. Some of the key definitions in RM-ODP are the distribution
transparencies. RM-ODP defines in distribution transparencies which specify the
qualities provided by distributed computing infrastructure (Figure 1.6). Currently
available commercial infrastructures provide some subset of these, such as location, and
access transparencies provided by CORBA along with partial support for persistence in
transaction transparency. Additional transparencies are available through niche-market
products and through custom implementations which are enabled by proper architectural
separation of infrastructure requirements from technology selections. Technologies which
do not provide access transparency, such as Microsoft COM+ and the distributed
computing environment, do not adapt well to the future evolution of distributed systems
(Figure 1.7).

Figure 1.6. Distribution Transparencies

Figure 1.7. Distribution Channel model

IT-SC 28

RM-ODP provides standard definitions for distributed infrastructure objects that enable
abstract descriptions of engineering constraints. Figure 1.7 is an example of the
engineering objects which RM-ODP defines. These engineering objects are capable of
defining the characteristics of all forms of distributed infrastructure, including remote
procedure calls, screening data interfaces, and asynchronous interfaces for signaling.
Among the most important features of RM-ODP are its definitions supporting
conformance assessment. After all, what is the purpose of architectural documentation
unless we can assess conformance—that is, make sure that the implementation of the
system corresponds to the written and intended architectural plans.

RM-ODP defines four categories of conformance and proceeds to specify how
conformance is represented in an architectural plan. The first category is called
programmatic conformance. This is the usual notion of behavioral testing of software
interfaces. Many of the programmatic conformance points will occur in the
computational viewpoint specification of RM-ODP based architectures.

Perceptual conformance includes testing at user interfaces in communications ports
that represent external boundaries to the system. Usability and user interface testing can
be defined through perceptual conformance assessment. Interworking conformance
involves testing between systems implementations. It is not sufficient for individual
systems to have programmatic conformance in order to guarantee interoperability.
Interworking conformance includes interoperability testing between working
implementations, which is an additional requirement beyond programmatic conformance.
Interchange conformance involves testing of the exchange of external media, such
as disks and tapes. It ensures that information that is stored on external media can be
interpreted and assimilated in other systems that conform to the same standards. RM-
ODP also defines correspondence requirements between the various viewpoints of

IT-SC 29

application architecture. In general, the objects defined in each of the viewpoints do not
have to be explicitly correspondent, because they represent independent description of the
system representing various levels of granularity of descriptions and constraints.

Several key points of correspondence must be ensured. The computational viewpoint
must support any dynamic behaviors that are specified in the information viewpoints. The
information viewpoint represents the information in the information system and its
processing. Whenever a process occurs, it must be explicitly allocated to the internal
operation of one of the computational modules or it must be explicitly allocated to a
particular computational interaction—in other words, invoking a software interface to
cause the processing of information. In addition, there is an explicit correspondence
requirement between the computational and engineering viewpoints. In general,
engineering objects outnumber computational objects, because the engineering viewpoint
exposes the objects in the distributed infrastructure, which may be numerous. For every
computational interface defined in the computational viewpoint, there must be an explicit
correspondence to engineering interfaces in the engineering viewpoint objects. The
computational boundaries must map onto distributed engineering objects so that the
distribution strategy is clarified by the architecture.

Applications and Profiles

Open systems standards (such as RM-ODP) are purposely generic so that they apply to
all domains. To make standards deliver their benefits, a profile is required. A profile is
an implementation plan for how the standard is applied within a context. Several profiles
of RM-ODP are in use today.

The 4+1 View Model is a viewpoint-based architecture approach supported by OO tools
such as Rational Rose. The viewpoints include:

Use Case View

Logical View

Process View

Implementation View

Deployment View

The use case view models enterprise objects through a set of scenarios. The logical view
includes object models of packages, classes, and relationships. The process view
represents control flows and their intercommunications. The implementation view defines
the modular structure of the software. The deployment view identifies the allocation of
software onto hardware. An architecture defined as a 4+1 View Model covers aspects of
all 5 RM-ODP viewpoints.

RM-ODP is being applied in several industries, including financial services and defense.
For example, the United States Department of Defense (DoD) has a profile of RM-ODP,
called the Command, Control, Communications, Computers, Intelligence, Surveillance,
and Reconnaissance Architecture Framework (C4ISR-AF). C4ISR-AF defines three

IT-SC 30

viewpoints: operational architecture, system architecture, and technical architecture. An
information viewpoint is also specified.

Before applying the framework, DoD services defined their architectures using disparate
conventions. C4ISR-AF is currently used by all DoD services to describe their
architectures. The framework is enabling technology exchanges across diverse system
development programs. Reuse opportunities and common interoperability solutions are
being identified and defined as a result.

Viewpoint Notations

Within each viewpoint, the RM-ODP approach uses formal notations (or specification
languages) that support architecture description.

One of the most useful notations for specifying computational viewpoints is the ODP
interface definition language (ODP IDL). ODP IDL is a related international standard
that is identical to CORBA IDL. It enables the specification of object encapsulations that
can be implemented on multiple infrastructures, such as CORBA, Microsoft COM, and
the Adaptive Communication Environment (ACE). Since ODP IDL is programming-
language independent, a single interface specification suffices to define interoperable
interfaces for C, C++, Ada95, COBOL, Smalltalk, the Java programming language, and
Microsoft IDL. These mappings are defined by open systems standards and supported by
commercial products.

Another useful notation for describing architecture viewpoints is the Unified Modeling
Language (UML). UML is an object-oriented notation recently adopted by the Object
Management Group. UML is also supported by Microsoft in its respository and
development environment technologies.

Although it is not widely publicized, RM-ODP is providing architectural benefits in
multiple industries. RM-ODP is a formal standard that defines how to describe
distributed OO architectures. In practice, RM-ODP's viewpoints, models, and
transparency properties are useful conceptual tools for object-oriented architects.

1.3 Design Patterns and Software Architecture

We view software architecture as an eclectic practice, combining ideas from many areas
of computer science and software engineering. Reuse of these ideas and existing
knowledge is paramount to the effective practice of the architectural discipline. Luckily,
the popular movement of design patterns has codified and documented a great deal of
software knowledge for this purpose. We believe that software architects should also be
pattern literate.

What the design patterns community has done is to make the reuse of lessons learned into
a popular, trendy approach. Patterns represent a rejection of originality as a technical goal,
including an active avoidance of the Not-Invented-Here (NIH) syndrome.

IT-SC 31

Design Patterns

Design patterns are a significant extension to object-oriented paradigm. Design patterns
are documented representations of software engineering knowledge. They are intended to
capture expert-level knowledge and important lessons learned. Design patterns are a
departure from previous object-oriented guidance in several respects. Patterns document
essential design knowledge, transcending original object-oriented notions. Originally,
object orientation was based upon modeling of the natural world as objects. To design
effective software systems, more sophisticated structures are needed that are unique to
software.

Design patterns have more stringent requirements for documenting knowledge. Design
patterns should represent proven solutions, not merely wishful thinking about how
software should be done. This concept is embodied in the so-called rule of three.
Informally, the rule of three states that: "A single design occurrence is an event, two
occurrences are a coincidence, and three occurrences are a pattern." To the design
patterns authors, there is a more literal meaning, that patterns are proven solutions
applied by one or more communities of experts on a recurring basis.

Design patterns also introduce the notion of design force, also called issues or concerns.
Design patterns document these forces explicitly and elaborate the solution in terms of
resolving the design forces.

In order to facilitate problem solving, it is useful to find ways to separate design
concerns—design elements which are implicitly responsible for resolving all potential
concerns, those that are potentially unstable (when subject to scrutiny), and those that
may require voluminous documentation to justify the design. Explicit reference models
for separation of concerns have been proposed for software engineering and other fields
of engineering endeavor.

Figure 1.8 also contains a software design-level model proposed by Shaw and Garlan
showing three levels [Shaw 96]. In comparison, the software community does not have a
sophisticated view of how to separate design concerns, and it is also not known what the
components are that comprise each of these levels. In the software design model, the
machine level represents the binary software that is part of the operating system and
commercial products that cannot be modified by the application developer. The code
represents the program that is the domain of application development, and the third level
is the architecture, which provides a model of how the system is partitioned and how
the connections between the partitions communicate. The shortcomings of this simple
model are that it does not represent any significant separation of concerns and that
important properties such as interoperability between systems are not considered.

Figure 1.8. The Concept of Design-Level Models

IT-SC 32

Software Design-Level Model

Figure 1.9 shows the software design-level model that we propose in our book called
CORBA Design Patterns [Mowbray 97a]. This model was originated by one of the
founders of the design pattern movement, Richard Helms, and describes in a recursive
fractal fashion what the various levels of software design are in terms of objects. At the
micro levels we have individual objects, and the design principles that apply to those
individual objects are usually object specific. There is a class of patterns called idioms
which represent design guidance for language-specific issues. These issues are fairly fine
grained.

Figure 1.9. Software Design-Level Model

IT-SC 33

The next level up is called micro architecture patterns. In micro architectures we have
small configurations of objects, generally a handful of objects that give us sophisticated
ways of organizing our software structure to support variability in other qualities of
design. The framework level then takes a number of micro architecture patterns and
combines them into a partially completed application with reusable software. Above the
micro level, we have completed applications and systems. The application level
represents the application of zero or more frameworks to provide an independent program.
We encounter issues such as user interface programming which are significant in
software development. At the system level, we take a number of applications which play
the role of subsystems and integrate those applications to create a working system
environment. The system level is where many of the design forces applicable to
programming are changed in terms of their priorities. Management of complexity and
change becomes critical at the system level and above.

At the enterprise level, we have a number of different systems which are integrated
across an organization or virtual enterprise of organizations working in conjunction. The
enterprise level is the longest scale of internally controlled operating environments.

The global industry level is represented by the Internet, the commercial market, and the
standards organizations, which comprise the largest scale of software systems. Figure
1.10 represents the separation of design forces which occurs as we move throughout
these various levels. Overall, the management of risk is a force which applies at all levels
when we make software decisions. At the finer-grained levels, management of
performance and functionality issues is very important and perhaps dominates any of the
other design forces that apply horizontally across all the levels. Looking at the system
level, the key design forces here include the management of change and the management
of complexity. We come to this conclusion due to the writings of other authors. In

IT-SC 34

particular Horowitz writes that the adaptability of systems is the primary quality which is
missing where the majority of system cost is due to changes in requirements reference
[Horowitz 93]. Shaw and Garlan identify the management of complexity as the key
design force at the system architecture level [Shaw 96].

Figure 1.10. Prevalent Forces in Software Decisions

Above the system level the environment changes on a more frequent basis. Each system
must be modified to support individual business processes; at an enterprise level with
multiple systems the change accumulates as people move and the organization evolves on
a daily basis. Management of the resources at the enterprise level and of technology
transfer to support capabilities such as design and software reuse becomes more
significant and important. At the global and industry levels, the management of
technology transfer become predominant. When something is published on the Internet, it
is instantly accessible on a global basis to virtually any organization or individual. Using
the management of technology transfer design force, it is important to manage the
information that the enterprise discloses in terms of software intellectual capital as well
as the information that the organization exploits.
Figure 1.11 shows the overall priorities for these horizontal design forces as they apply
to the coarser-grained levels. Here we show that at the system architecture level the
management of change is the predominant force, because it is linked directly to the cost
of the system in published work. We also identify as a second priority the management of
complexity, because it is a design force that is emphasized by academic authorities in
software architecture. Priorities at the other levels are indicated to show how the
perspective of each of the architectural designers at these levels varies by the scale of
software design. We see these as guidelines for making sure that the appropriate priorities
are allocated to decisions that are made at each of these levels. The reference model helps
us to organize patterns knowledge and identify priorities for design forces that are

IT-SC 35

horizontal across all the levels. Design patterns are a modern approach to providing
technical guidance. The breakthrough that design patterns provide is the capability of
applying lessons learned and reusing design information across organizations.

Figure 1.11. Priorities for Key Design Forces

Design patterns represent a high-quality academic research movement that has its own
conference series and visibility at most other technology events. The origin of design
patterns comes from actual bricks-and-mortar building architecture. The original vision
for design patterns included a design level model which we did not discover in other
authors' work. We believe that design patterns represent the right approach for
documenting guidance and solving technical problems in software architecture and
system development. Figure 1.12 shows an example of a popular design pattern called
the model view controller. This is a pattern that applies at the framework level and
provides an approach for reusing software objects that contain data and processing which
must be viewed and controlled in many different ways.

Figure 1.12. Model View Controller Pattern

IT-SC 36

The model view controller pattern includes model objects, view objects, and controller
objects. The model object is the reusable component. It represents the data in the system
and the encapsulating processes which need to be represented and controlled in several
ways. The view objects represent various visualizations of that information, and there can
be many simultaneous views that may be presented to groups of users. The controller
objects represent various business processes or mechanisms for controlling the processing
of the data. The model view controller pattern has been around at least since the invention
of Smalltalk and has been reapplied at several different scales of software by various
groups, including UML's business classes and the OMG business object task force which
defines business objects in an analogous set of categories [Mowbray 97b]. Figure 11.6
shows the overall structure of design patterns. The essence of any design pattern is a
problemsolution pair. The problem is explained and expanded in terms of the applicable
design forces and any contextual forces which may be present. The solution resolves the
design forces in a particular manner. The selection of any solution is a commitment, and
a commitment provides some benefits as well as consequences. In addition, selection of a
solution may lead to additional problems where other patterns are appropriate.

Design patterns are distinguished from other forms of software literature in that design
patterns are presented in terms of a standard outline or template. Several templates have
been published that meet the needs of various software design models. Figure 1.13 is a
listing of the template developed for the CORBA design patterns [Mowbray 97a]. In this
template there is a separation between the solution description and the variations of the
solution, which may vary by structure and by scale of application. Making this separation
allowed the authors to clarify the base solution at a particular scale and then to describe
the variations and nuances of applying the pattern in separate sections of the template.
The design pattern template is a rhetorical structure that ensures consistent coverage of
the key questions that people may need to answer in order to apply the design
information. In particular, when justifying the application of a pattern, it is important to

IT-SC 37

understand the benefits and potential consequences of the pattern to understand the real
tradeoffs in design. If the design pattern authors have properly documented the pattern,
they have identified those points of debate explicitly so that the users of the pattern do not
have to reinvent that information.

Figure 1.13. An Example Pattern Template

Figure 1.14 is an example of a CORBA design pattern that applies in general to
technologies beyond CORBA for system building. The problem is that most systems
have vertical solutions, where each software module has a unique interface corresponding
to each software implementation. The vertical solutions lead inevitably to stovepipe
interdependencies between the modules in the system. By adding the common interface
pattern to a system, we can capture the common interoperability information so that the
software modules can interoperate without explicit dependencies upon particular
implementations. The common interface pattern is a fundamental principle that is applied
in standardization work and in software architectures in general.

Figure 1.14. Common Interface Pattern

IT-SC 38

Figure 1.15 shows a related pattern which applies the common interface in a more
general and sophisticated context. In this pattern, called the horizontal vertical metadata
pattern, we have a static architecture for a system defined in terms of a common interface
with vertical interface extensions; also we are adding some dynamic architecture
elements represented metadata. A key tradeoff described in the pattern talks about how
dynamic architecture and static architecture can be varied to represent different portions
of the design. Dynamic architecture is one of the key solutions for implementing
variability and adaptability in software architectures.

Figure 1.15. Horizontal Vertical Metadata Pattern

IT-SC 39

Figure 1.16 shows how the horizontal-vertical-metadata pattern is actually an instance
of a more general concept that is applied across standards organizations and profiling
entities all the way down to a system level of deployment. This application of the
horizontal-vertical-metadata pattern is directly analogous to the functional and system
profiles that we describe in Chapter 4, where the functional profile is a vertical
extension of a global standard. A system profile is a vertical extension of a functional
profile, and any particular application system is a vertical instance of a system profile.

Figure 1.16. Pattern Applicability at Multiple Scales

Figure 1.17 shows an application-level pattern and how it is applied. We present this
example to give you a flavor of what is involved. In this case we are showing a UML
sequence diagram. Before the pattern is applied, there is a simple request and return
transaction which actually causes the client program to block while it is occurring. It
turns out that this is the default behavior of most distributed computing infrastructures
such as remote procedure calls and CORBA. We can improve the performance of this
configuration by adding a moderate amount of complexity and, after applying the pattern,
we can return a reference to the result which will be computed in parallel and then
retrieved later (Figure 1.17).

Figure 1.17. Partial Processing Sequence Diagram

IT-SC 40

Figure 1.18 shows a table of several examples of design pattern languages. Much of
the available pattern documentation addresses a specific software design level. More
recent work on CORBA design patterns and pattern-oriented software architectures has
addressed several levels of abstraction where these level are explicit. At the idiom level
of design patterns we are concerned with individual objects. Idiom documentation has
been widely available in the form of programming language guidebooks. Idioms
represent expert programming techniques. These are techniques that one would
rediscover after substantial use of a language. If software engineers are maintaining
software written by other people, it is essential to understand idioms in order to
understand the intentions of the programmers applying these sophisticated ideas.

Figure 1.18. Comparison of Design Pattern Languages

One of the first published design pattern languages described microarchitecture patterns
[Gamma 94]. The goal of the gamma pattern language was to invent a new discipline of
variation-centered software design. The gamma pattern language is organized in terms of

IT-SC 41

several categories including creational patterns, structural patterns, and behavioral
patterns. When applying the gamma patterns, complexity of design is increased with the
benefit of potential support for potential modification of the software. Gamma patterns
have become very popular and are applied widely in software engineering organizations
today.

AntiPatterns

A recent development in the patterns community is called AntiPatterns. An AntiPattern
differs from an ordinary pattern in that it is a solution pair rather than a problemsolution
pair (Figure 1.19). An AntiPattern starts with a problematic solution. The reason why
the solution is there is due to various contextual forces. The AntiPattern solution leads to
various kinds of symptoms and consequences, and the consequences can be quite
devastating. The AntiPattern proceeds to define a potential solution for migrating the
problematic solution to a refactored solution providing improved benefits. AntiPatterns
are fundamentally about software refactoring. Refactoring is modification to software to
improve its structure or quality. Common examples of AntiPatterns include stovepipe
systems, spaghetti code, and analysis paralysis. AntiPatterns are further explained in the
book AntiPatterns published by John Wiley & Sons in 1998 [Brown 98].

Figure 1.19. AntiPatterns

IT-SC 42

1.4 Conclusions

In order to realize the benefits of software components and object technology, much more
effective guidance is needed than the naive application of objects which characterized the
first generation of these technologies. Design patterns are a highly effective and
academically based guidance approach that is now being practically applied in many

IT-SC 43

software development shops. The technology and skills transfer available through design
patterns can lead to some important benefits, including reducing software risks,
enhancing the effectiveness and productivity of the software developer, and making
successful practices repeatable.

In particular, the reference model for open distributed processing is the formal standard
for object-oriented architecture. This reference model is widely used because it is
effective for defining distributed systems. The model is used in many industries where
mission-critical systems must be successful. RM-ODP separates complex concerns for
the specification of distributed systems. RM-ODP enables future proofing because it
defines an approach for specifying architectural plans which are independent of
distribution and technology choices. We believe that RM-ODP is a key architectural
guideline for object-oriented systems and should be applied in your organizational
practices.

1.5 Exercises

Exercise 1.1

Define your career plan for the next two years. As your career progresses to higher levels
of seniority, you will be expected to require redirection on a less frequent basis, with the
maximum being about once a year. We believe that planning is essential, so making a
career plan at this early stage of your reading would be a positive step. Identify your
goals, and then identify what you need to know in order to achieve your goals (i.e.,
knowledge gaps). Be brutally honest.

Example Solution:

Three years ago, my goal was to continue in technical architecture roles and increase my
knowledge in several areas, so that I could be a more complete contributor. In particular,
I wanted to gain extensive experience in UML modeling, design patterns, and software
process and to reconnect with programming fundamentals. I also wanted to gain some
management experiences to add to my resume. I wanted to give the research and
development cycle one more go, for both personal and professional reasons. After all, I
joined this industry because I loved programming. At the back of my mind was a desire
to help some friends in small commercial businesses, but I sorely lacked experience in
this area, having worked mostly for large defense contractors and think tanks. Having a
list of what I wanted to learn, I next consulted the Internet, the world's most extensive
collection of free resources. I located several books, training courses, and other
information that helped me identify specific learning targets.

Being a relatively independent middle manager in the technical ladder, I adjusted my
workload to align with my goals. I prepared a tutorial on UML and defined an
architecture using UML notation, which was within the scope of our research. I
downloaded the latest version of the Java programming language from Sun Microsystems
and began programming the first phase of the architecture prototype. I was having fun
and achieving my goals while performing useful architecture research and evangelism for

IT-SC 44

my firm, which was in the midst of UML adoption. Reviewing my results with co-
workers enriched my learning experience and helped my firm to move forward on UML-
related initiatives. Also I pursued directed readings and attended a patterns workshop,
which greatly enriched my knowledge of the field.

Having achieved a modicum of success on this path, I was ready for the next phase. Time
to replan. In the pre-Y2K days, the software industry was very profitable. Opportunities
abounded. I lacked much of the essential knowledge to help my friends in small
commercial businesses (my ultimate goal). In addition, I wanted to do more technical
architecture work, on a faster cycle. Defining a new architecture every month would be
ideal, but that kind of opportunity was not available at my current firm. Also, business in
my firm was in a cooling-off period.

A career change was in order. I took a job at a very stable, highly reputable small
commercial firm; e.g., their paychecks came regularly and they always cleared the bank.
This new firm knew everything that I wanted to learn—a perfect match. At the library I
discovered the book resources to learn the requisite areas of knowledge that I was lacking,
a bit of business training, and so forth. I was able to read about these matters and apply
them on the job daily. I was able to complete several interesting architecture projects,
including a financial system specification, a middleware architecture specification for a
large telecommunications firm, and a high-level architecture for a real-time system. In
addition, I was able to do a great deal of UML modeling, learn Visual Basic and C++,
and do some CORBA programming. I was also teaching courses on the topics that I
wanted to master—excellent progress, by any standards of performance. At this point, I
had achieved the technical goals that I had set two years earlier. Time to re-plan, as this
exercise continues in real life.

Exercise 1.2

Select an architecture framework for use in your current firm (or customer's
organization)—for example, RM-ODP, Zachman Framework, or 4+1 Model View. Write
a brief profile description about how the framework should be applied in your
organization.

Background for Solution:

We believe that having a framework is far superior to working without one. Whatever
framework you choose, certain conventions and guidelines for applying it in your
organization will need to be managed. The need for these profile conventions is most
obvious in the selection of the Zachman Framework. Since you have 30 candidate
specifications to write, you must address two issues. First, 30 specifications is too much
work, and you should compress and simplify the amount of effort required to plan a
system. Focus on the useful, practical elements for your domain of application. Combine
elements as appropriate to ensure coverage without elevating the document-driven
aspects to an unreasonable level. Second, if there is no profile, you can't possibly expect
any two architectures to be comparable. You should select essential and optional
viewpoints to be specified, and define what they mean in your organization's terminology.

IT-SC 45

You can also propose conventions for how these viewpoints will be documented, such as
a template for each viewpoint, and notational conventions. We believe that these steps are
required for any responsible application of these powerful frameworks.

Exercise 1.3

Create a pattern system for use in your organization. Select patterns from among the
available pattern catalogs to cover the areas of greatest concern and need in your
organization.

Background for Solution:

A "pattern system" is documented in a simple tabular form. Use page 380 of [Buschmann
96] as your starting point. The pattern-system table contains a listing of the names of each
pattern, along with their book page reference, for quick retrieval. Implicit in this exercise
is the selection of the key patterns catalogs (i.e., books) that would be readily available to
every developer. Remember: Patterns are lessons learned. The purpose of this exercise is
to create a job aid so that your developer can more effectively apply lessons learned. We
suggest that you consider including sources such as [Fowler 97], [Gamma 94], and
[Mowbray 97a, b] to your list of candidate catalogs.

IT-SC 46

Chapter two Software Architecture: Basic
Training

This chapter on basic training for software architects presents the fundamental tools you
require in order to be effective. In the military, basic training is used to challenge and
motivate cadets and to demonstrate both the demands and rewards of a military career.
Similarly, software architects must be motivated individuals who have the desire to
confront the challenges of technical leadership in a software development effort.
However, motivation is not enough. A software architect must be equipped with the
intellectual tools to concretely realize in software an architectural vision.

This manual takes a hands-on approach that not only presents the best architectural
practices in the industry but also provides concrete real-world examples and exercises for
applying the presented material to circumstances common throughout the software
industry. Basic training will cover the fundamental concepts of software technology,
which provide a foundation for software architecture. Software technology has evolved
through many trends and alternatives for software development. Currently, mainstream
software practice has evolved from procedural software to object orientation (Figure
2.1). With the increasing adoption of enterprise Java and Microsoft COM, component-
orientation is the next major paradigm. In corporate development, most new-start projects
are adopting object orientation because it is supported by the majority of commercial
development environments. As we will discuss, object orientation has a very weak notion
of software architecture, which leads to serious shortcomings. The emerging trend of
component orientation is replacing old approaches with strong elements of architectural
design.

Figure 2.1. (a) Procedural Paradigm and (b) Object-Oriented Paradigm

IT-SC 47

Software architects must be able to articulate these development paradigms clearly, along
with appropriate uses of enabling technologies. In any given project, an eclectic mixture
of development paradigms (including relational database management) can be useful to
achieve the best results. Each paradigm has something useful to offer, including mature
development tools. An interesting discussion of multiparadigm programming is presented
in [Coplien 99].

2.1 Software Paradigms

Today, most organizations will find their technology skill base engaged in one of the
three major paradigms: procedural, object oriented, or component oriented. Where you
are today is highly specific to your organization and your staff skills. Procedural and
object paradigms are closely tied to programming-language choice, but you will find that
component orientation is different in that it is more closely associated with the selection
of an infrastructure.

Procedural programming languages include FORTRAN, COBOL, Pascal, BASIC, and
many others. In procedural technology, the program comprises the process for executing
various algorithms. The process is separated from the data in the system, and the process
manipulates the data through direct access operations. This is a direct outcome of the
stored-procedure programming systems from which computer technology originates.
When the program and data are separated, there are many potential interdependencies
between parts of the program. If the data representation is modified, there can be
substantial impacts on the program in multiple places.

An example of data–process separation is the year 2000 problem, in which simply adding
some additional digits to the date representation has catastrophic consequences for
procedural software. Unfortunately, because the majority of systems are built with
procedural technology, the dependencies upon these data representations can cause
systemwide program errors and the necessity for line-by-line program review and
modification.

Object-Oriented Paradigm

Object-oriented programming languages include Smalltalk, C++, and the Java
programming language ("the Java language"). These languages support the encapsulation
of data with accessor code in terms of abstract data types (commonly called classes). In
object-oriented programming languages, the encapsulation capabilities are sufficient for
reasonably sized programs. As long as software modules are maintained by individual
programmers, encapsulation is sufficiently robust to provide some intrinsic benefits.
However, we shall see that language-specific encapsulation is insufficient to support
software reuse and distributed systems.

In object-oriented technology, the basic paradigm is changed to enable a separation of
concerns. Figure 2.1 shows the object-oriented technology paradigm in which the
program is broken up into smaller pieces called objects. Each object contains some of

IT-SC 48

the data of the system, and the program encapsulates that data. In other words, access to
the data is only available through using the program through which it is directly
associated. In this way, the system is partitioned into modules which isolate changes.
Changes in data representation usually only impact the immediate object which
encapsulates that data.

Objects communicate with each other through messages. Messages can have an impact
upon state—in other words, changing the data—but only through the encapsulated
procedures which have an intimate relationship to the local data. For small-scale
programs, the object paradigm is effective in its isolation of change. However, the
paradigm is not perfect for all of its potential uses.

Technology and System Scale

When the size of the system is scaled so that many programmers are involved, the
encapsulations have been found to be insufficient to isolate change across systems. In this
case, additional component-oriented infrastructures are needed to provide industrial-
strength encapsulations of the data and associated programs.

One example is the CORBA interface definition language, which defines object-oriented
interfaces that are sufficiently opaque to support the integration of large-scale distributed
systems. In fact, the encapsulation mechanism, or IDL, is powerful enough to enable the
transparent integration of multiple programming languages such as Smalltalk and the
Java language as well as the object-oriented communication across heterogeneous
systems which may involve multiple operation systems and protocol stacks.

Objects Are the Commercial Baseline

Object-oriented technology is in widespread use today. It has been said that the
procedural technologies originated from academia but the object-oriented technologies
originated from commercial organizations. In fact, object-oriented technologies have
many interesting origins which go back virtually to the beginning of computer science.
Today, object technology is the dominant paradigm for commercial software. Virtually
every vendor in the software business is providing object-technology solutions which,
together with component infrastructures, can enable interoperability between software
vendors in various software environments.

For example, corporate development organizations today are migrating from procedural
languages such as C and COBOL to object-oriented languages which have gained
substantial popularity in recent years. Languages such as the Java language have made a
dramatic impression on society as a whole. An awareness of the Java language is so
commonplace that even the man on the street is familiar with the terminology for this tool
of software developers.

Object-Oriented Architecture: An

IT-SC 49

Oxymoron

For the majority of practitioners, object orientation is devoid of a software
architecture approach. This is manifested in multiple ways in object-oriented
methods and culture. Starting with what is generally regarded as the original
source for OO thinking, Wirfs-Brock's 1990 book, Designing Object-
Oriented Software, there was a notion of software architecture, including
the discovery of subsystems through inspection of collaboration diagrams. It
merited an entire chapter of Wirfs-Brock's method in 1990. In the next decade,
little was written about architecture in the OO methodology community. Major
OO methodology books had at most a few paragraphs concerning architecture,
which were a faint reflection of Wirf-Brock's architecture notions.

Since virtually nothing was written about architecture in the literature, most OO
practitioners had no architecture guidance. There was no reason to consider
architecture important. This has led to great confusion on OO projects, as team
members struggle to manage complexity and scalability with OO methods not
designed to address them.

In general, OO methods involve successive refinement of object models, where
most analysis objects are eventually transformed into programming objects. In
our terminology, we called these approaches model-based methods. The
assumption that each analysis object will inevitably become a programming
object is a major obstacle for OO thinkers to overcome in order to understand
architecture. In architectural models, specification objects represent constraints,
not programming objects. They may or may not be transformed into
programming objects; that is an independent decision of the developer.

OO also opposes architecture in other subtle ways, related to project culture. OO
encourages project teams to be egalitarian (e.g., CRC cards), where all decisions
are democratic. On such a project, there is no architect role, because there is
little separation of decision making between members of the development team.

OO encouraged "bad-is-better" thinking in development, a philosophy which is
virtually the opposite of architectural thinking. Using "bad is better," the
external appearance of a working implementation greatly outweighs any
requirement for maintainable internal structure. In other words, rapid iterative
prototyping, with ruthless disregard for architectural principles, is a normal,
healthy environment for OO development.

The topic of architecture has resurfaced only recently in OO literature, with the
newfound popularity of componentware. Now it is customary to include a token
chapter on architecture in most methodology books, whereas in the heyday of
OO, architecture was virtually taboo. In one sense, componentware is a response
to the shortcomings of OO. Componentware, with its emphasis on larger-
variable-grained software modules, is a clear step toward an architectural

IT-SC 50

mindset.

Databases and Objects

Database technologies are also evolving toward objects. The database technologies
originated with several different models. In recent years, the relational model of
databases has been predominant. More recently, object-oriented databases have become a
substantial technology market, and databases which combine object orientation and
relational concepts are becoming prevalent.

Database query languages, such as Structured Query Language (SQL), are being
extended in standards work to support object-oriented concepts. One reason why this is
occurring is that the kinds of applications people are creating require substantially more
sophisticated types of data representations and types of query algorithms for searching
and manipulating the information.

Object in the Mainstream

Object technology is used today in most application areas and vertical markets. Dozens of
projects are being pursued by government organizations in object technology as well as
commercial industry. A principal advantage of technology is that it enables the
implementation of new business processes which provide competitive advantage to
organizations. Society is changing toward increasing dependence upon information
technology. The use of object technology enables rapid system implementation and
various forms of labor saving through software reuse mechanisms. Even though the
largest number of lines of software are still written in procedural languages such as
COBOL, it is becoming clear that this paradigm is changing.

Toward Components: Scripting Languages

Proponents of scripting languages claim that there are a larger number of scripting
language programmers than there are of any other kind [Ousterhout 98]. Scripting
languages such as the JavaScript language, TCL shell programming languages, and
Visual Basic enable pre-existing software (e.g., components) to be easily integrated into
application configurations.

Since object-oriented software and object technology is the dominant commercial
paradigm, it is important to understand the major flavors of commercial technologies
which are available for the architecture of software systems. The two major categories
include commercial off-the-shelf proprietary software and commercial off-the-shelf open
systems software (see Section 2.2).

Componentware: The Component Orientation Paradigm

IT-SC 51

Moving to the next level of software sophistication requires fundamental changes in
systems thinking, software processes, and technology utilization. The next major area of
technology, componentware (or component orientation), contains key elements of the
solution to today's critical software problems.

The componentware approach introduces a set of closely interrelated techniques and
technologies. Componentware introduces a sophisticated mindset for generating business
results. These componentware elements include:

Component Infrastructures

Software Patterns

Software Architecture

Component-Based Development

Componentware technologies provide sophisticated approaches to software development
that challenge outdated assumptions. Together these elements create a major new
technology trend. Componentware represents as fundamental a change in technology as
object orientation did in previous generations. We will discuss these componentware
technologies after a brief introduction to componentware's unique principles.

Components versus Objects

Componentware can be understood as a reincarnation of object orientation and other
software technologies. Distinguishing componentware from previous generations of
technology are four principles: encapsulation, polymorphism, late binding, and safety.
This list overlaps with object orientation, except that it eliminates the emphasis on
inheritance. In component thinking, inheritance is a tightly coupled, white-box
relationship that is unsuitable for most forms of packaging and reuse. Instead,
components reuse functionality by invoking other objects and components instead of
inheriting from them. In component terminology, these invocations are called
delegations.
"One person's architecture is another person's detail. One person's system is another
person's component" [Rechtin 97].

By convention, all components have specifications corresponding to their
implementations. The specification defines the component encapsulation (i.e., its public
interfaces to other components). Reuse of component specifications is a form of
polymorphism which is strongly encouraged. Ideally, component specifications are local
or global standards that are widely reused throughout a system, an enterprise, or an
industry.

Componentware utilizes composition for building systems. In composition, we integrate
two or more components to create a larger entity, which could be a new component, a
component framework, or an entire system. Composition is the integration of components.
The combined component acquires joint specifications from the constituent component.

IT-SC 52

If the components have matching specifications for client calls and services, then they
can interoperate with no extra coding. This is often called plug and play integration.
When executed at runtime, this is a form of late binding. For example, a client
component can discover a component server through an on-line directory, such as the
CORBA Trader Service. With matching client and service interface specifications, the
components can establish a run-time binding to each other and interact seamlessly
through the component infrastructure.

In a perfect world, all components would be fully conformant with their specifications
and free from all defects. Successful operation and interoperation of components depend
on many internal and external factors. Safety properties can help because they can
minimize entire classes of defects in a component environment. As society becomes
increasingly dependent upon software technology, safety has become a serious legal
concern and one of the most important areas of computer science research.

For example, Java's garbage collection feature guarantees memory safety, or freedom
from memory deallocation defects (which are problematic in C++ programs). Other kinds
of safety include type safety (guaranteed data type compatibility) and module safety,
which controls the effects of software extension and component composition.

Component Infrastructures

The componentware revolution has already arrived in the form of component
infrastructures. Major platform vendors have bet their futures on componentware product
lines. In particular, Microsoft, Sun Microsystems, IBM, and the CORBA consortia have
established significant componentware infrastructures through massive technology and
marketing investments.

These component infrastructures (Microsoft COM, Sun Enterprise JavaBeans, and
CORBA request brokers) are dominant infrastructures for overlapping industry
segments—Microsoft COM+ on the desktop; the Java language for cross platform
applications; and CORBA for corporate networks and the Internet. Interestingly, these
technologies are also mutually interoperable, with Microsoft, Sun, IBM, and others
supporting the CORBA Internet Inter-ORB Protocol (IIOP) for Microsoft COM and Java
Remote Method Invocation (although the Java language works equally well with
CORBA). In the following paragraphs, we'll compare these infrastructures briefly.

Microsoft has been promoting the Component Object Model (COM) and follow-on
products for several years. COM is a single-computer component infrastructure. OLE and
ActiveX define componentware interfaces based upon COM. In theory, the Distributed
Component Object Model (DCOM), now called COM+, extends the capabilities of COM
over networks and the Internet. With these technologies, Microsoft has funded a major
corporate strategy promoting a worldwide migration to componentware over the past five
years. Future Microsoft plans indicate that it will continue its componentware initiative
for the forseeable future.

IT-SC 53

Sun Microsystems' invention of the Java language is a continuing evolution of
programming-language features, infrastructures, and related class libraries. The Java
language technology has created tremendous industry excitement and support from
independent developers. The extensions for JavaBeans and Enterprise JavaBeans
establish an evolving component model that rivals COM and ActiveX in the cross-
platform application space. Enterprise JavaBeans and the IBM San Francisco project are
using Java Remote Method Invocation (RMI) for distributed computing, one of several
proprietary infrastructures available to Java language programmers. While proprietary
Java language infrastructures do provide convenience for programmers, they lack one key
capability: ease of interoperability with other programming languages. This may be a
serious limitation for corporate projects because it hampers legacy integration and cross-
language development which is commonplace for server applications. Another, more
subtle, issue is that Java application programming interfaces (APIs) are not standard. For
popular technologies like JDBC, vendors often customize the APIs as they create their
value-added versions of the Sun reference technologies.

The Common Object Request Broker Architecture (CORBA) is an open systems standard
for distributed infrastructure supported by multiple vendors, industry consortia, and
formal standards bodies. Recently there has been a surge in CORBA licensing in
corporate development organizations, with a surprising array of Fortune 500 companies
adopting CORBA for enterprise projects, including banks and manufacturers. From its
inception CORBA has supported both object and componentware models. With today's
CORBA products supporting multiple component interfaces in a single encapsulated
servlet, CORBA is an ideal infrastructure for componentware development involving
heterogeneous hardware/software, multiple programming languages, or distributed
computing. Recently, CORBA has been extended to support the capabilities of message-
oriented middleware and domain-specific API standards (health care, manufacturing,
financial services, and so forth). Just like any other technology, CORBA products do
have limitations (e.g., memory leaks, conformance, performance). However, for a
standard established in 1991, it is amazing how well the CORBA architecture has
weathered cataclysmic innovations in other technologies and emerged ever stronger (e.g.,
the Java language and the Internet).

Java application servers have overtaken CORBA's role in many Internet-savvy
organizations. What CORBA lacks is direct support for scalability, reliability, and
maintainability. These capabilities are standard features supported by most Java
application servers today.

Componentware infrastructures are having a significant impact on software development.
In many respects, these infrastructures are well on their way to becoming mainstream
development platforms. Because all of them are becoming interoperable (through
CORBA IIOP), there is a well-understood relationship between infrastructure models.
Their similarities are much greater than their proprietary differences might imply.

Infrastructure selection is one of the most discussed, but least important, aspects of
implementing componentware. For corporate developers, the most critical issues are
confronted well after infrastructure selection. These issues include: how to master

IT-SC 54

designing with the technology, how to architect systems, and how to coordinate one's
development efforts. These areas are covered in the next three sections.

Component Software Patterns

Software patterns comprise a common body of software knowledge which can be applied
across all component infrastructures (see Section 1.3). The most famous category of
software patterns, called design patterns, comprises proven software design ideas
which are reused by developers. Other important categories of patterns include analysis
patterns and antipatterns. Analysis patterns define proven ways of modeling business
information that can be directly applied to the modeling of new software systems and
databases.

Software patterns are a necessary element of componentware. The development of new,
reusable components requires expert-level quality of design, specification, and
implementation. Proven design solutions are necessary to establish successful component
architectures and frameworks for families of applications. Often, there are too many
variables to take chances on unproven design concepts.

The popularity of software patterns can be explained as a response to the practical
shortcomings of object orientation. Antipatterns explain the common mistakes that
people make when developing object oriented software systems (as well as other types of
systems). Much more is needed than basic object-oriented principles to build successful
systems. Design patterns explain the additional, sophisticated ideas that are required for
effective software designs. Analysis patterns present the sophisticated ideas necessary for
the effective modeling of concepts and data.

It is still commonplace in software development to reinvent design ideas, incurring the
risks and delays of trial-and-error experimentation. If fact, most software methods
encourage reinvention as the normal mode of development. Considering the challenging
forces of requirements change, technology innovation, and distributed computing, we
consider reinvention to be an unnecessary risk in many circumstances. This comment is
especially applicable to the development of components, where the costs of defects and
redesigns can affect multiple systems.

Altogether, software patterns can be described as knowledge reuse. It is interesting
to note that most patterns are considered as simple as common sense by expert-level
developers. However, for the majority of developers, patterns are a necessary part of
technical training that can help them to achieve world-class results.

Component Software Architecture

Software architecture concerns the planning and maintenance of system structure from
earliest system concept through development and operations. Good architectures are
stable system structures which can accommodate changes in requirements and
technologies. Good architectures ensure the continuous satisfaction of human needs (i.e.,
quality) throughout system life cycles. Reusable components are examples of good

IT-SC 55

architecture. They support stable interface specifications, which can accommodate
changes due to reuse in many system contexts.

Software architecture plays an important role in component design, specification, and use.
Software architecture provides the design context within which components are designed
and reused. Components have a role in predetermining aspects of software architecture.
For example, a component framework may predefine the architecture of a significant
portion of a system.

One of the most exciting aspects of software architecture for componentware is
supporting distributed project teams. A software architecture comprises a system
specification that enables parallel, independent development of the system or its parts. A
proper software architecture defines computational boundaries (i.e., API) that divide the
system into separate testable subsystems. These subsystems can be outsourced to one or
more distributed project teams.

Component-Based Development

Component-based development is software development with a difference. Many process
aspects are reused, such as iterative, incremental development. The primary
componentware difference is the specialization of technical roles. Three key
componentware roles are software architect, component developer, and application
developer. These differ from object-oriented approaches, which promoted notions of all-
purpose programmers, committee-based design, and architecture after-the-fact.

A typical leadership team for a project comprises a software architect and a project
manager. The architect works in conjunction with management to make key technical
decisions, those with systemwide impact. The architect is responsible for technical
planning of the system and for communicating these plans with developers. Since the
architect coordinates systemwide design decisions, many other technical decisions are the
responsibility of developers. To be effective, the architect must have the highest levels of
experience and technical training, with outstanding skills in design, specification writing,
and spoken communication.

The best component developers are also the most talented programmers. They design and
program the building blocks from which the application will be constructed. The architect
defines the major boundaries behind which component-based services will be provided.
Reuse of preexisting components is evaluated with respect to an organizational software
repository. For new component requirements, the component developers design and
construct new software, updating the organizational repository. Typically, components
will implement the horizontal functions and lower-level aspects of the system, reducing
the need for application developers to reinvent these capabilities. Component developers
make intensive use of software patterns, applying several overlapping patterns to each
component design and implementation.

Application developers are responsible for integrating components and implementing the
vertical requirements of the system, including user interfaces. They apply preexisting

IT-SC 56

components to the solution of application-specific problems. Application developers must
communicate with end users having some domain expertise.

Generally, component developers use systems programming languages, such as the C++
and Java languages, while application developers use scripting languages, such as the
JavaScript language, TCL, Python, and Visual Basic. Systems programming languages
allow more control of low-level issues but are more difficult to use for application
building. Scripting languages provide a higher level of abstraction, with a corresponding
reduction of up to 8:1 in lines of code needed to implement a given requirement,
compared to systems programming languages.

Componentware is the next major software technology trend. In many ways, it has
already arrived and is readily available for commercial exploitation. This revolution is
actively supported by major vendors, including Microsoft, Sun, IBM, and the CORBA
vendor consortia. The most important aspects of componentware are not the choice of
technologies, but how these are applied. Successful adoption of componentware must
include the reuse of software patterns, the planning of software architecture, and the
establishment of component-based development teams.

The componentware revolution is an exciting opportunity to avoid the inadequacies of
outdated software approaches. Componentware enables you to survive and thrive when
facing the challenges of requirements change and rapid commercial innovation.
Componentware delivers the benefits of software reuse and enables outsourcing to
distributed project teams.

2.2 Open Systems Technology

Proprietary software is a non-standards-compliant product of a single vendor. That
single vendor controls the form and function of the software through many iterations of
product releases. When today's systems are built, they are dependent upon commercial
software to varying degrees. Commercial software is the primary form of software reuse
and in practice is a much more effective form of reuse within individual enterprises.

One reason why commercial software is a more powerful form of reuse is due to an
economy of scale. Large numbers of copies of the software are distributed to customers,
and the software can be debugged and quality controlled to a degree which exceeds the
in-house development capabilities of even the largest end-user enterprises. When end-
user enterprises depend upon proprietary software, they are dependent upon the vendors'
continued support for existing capabilities, and architecturally many end users depend
upon future features which the vendors claim will be added to the software. When
proprietary software is packaged in the form of a public specification or standard, the
specification is usually a direct representation of that single software implementation.

Often, when proprietary specifications are put forward in the public domain, it is unlikely
that the proprietary implementation will be modified. This leaves the impression that
proprietary software can also be an open system standard, when in fact there is no
possibility of modification of the underlying technologies. This phenomenon is especially

IT-SC 57

true when millions of software licenses have been distributed and are running on existing
software systems. When proprietary technology is put forward, vendors use unique
interpretations of software concepts to describe their products. These interpretations can
include fundamental modifications to object-oriented principles.

"Successful architectures are proprietary, but open" [Rechtin 97].

The most significant aspect of proprietary technology is the provision of application
program interfaces (APIs). The APIs to proprietary software define the boundary between
a proprietary implementation and any value-added application software which either an
independent software vendor or the end user provides to build application systems. As
proprietary software technologies evolve through multiple releases, the application
program interfaces can change.

New capabilities are continuously added to proprietary software, and this exacerbates the
complexity of application program interfaces. In many cases the complexity of the
program interfaces available with proprietary software greatly exceeds the functionality
needs of end-user organizations. It then becomes appropriate for the end-user
organizations to attempt to manage this complexity in various ways. We will cover
complexity-management concepts in several chapters.

In addition to adding new capabilities to proprietary program interfaces, vendors also on
occasion may obsolesce interfaces in software. When program interfaces are obsolesced,
there can be a significant maintenance impact upon application software. As proprietary
software evolves through multiple releases, it is important for users to continue to
upgrade the software to remain in synchronization with the mainstream support activities
from the proprietary vendor. When the end users' systems fall behind more than two
cycles, it is often necessary to completely repurchase and reintegrate the commercial
software in order to synchronize with the currently released version. Many end users have
found an almost complete obsolescence of application program interfaces within a few
cycles of product release.

In summary, proprietary software releases and the evolution of the program interfaces
become a treadmill for application programmers and independent software vendors to
maintain synchronization with available and supported software. There is a conflict of
interests between the application users and the proprietary software vendors, because the
vendors' majority of profits can be driven by the sale of software upgrades.

The other major category of commercial software is open systems technologies (Figure
2.2). An open system technology is fundamentally different than a proprietary
technology. In an open system technology, there is multivendor consensus to develop a
specification that is independent of proprietary implementations. This is the case of most
formal standards activities and many consortium standards activities which are becoming
increasingly prevalent. In an open systems technology, the specification governs the
behavior of the implementations.

Figure 2.2. (a) Proprietary Technology and (b) Open Systems Technology

IT-SC 58

One of the key benefits is a consistency of implementation interfaces across multiple
vendors. Additional benefits include uniformity of terminology and software interfaces,
because the open systems technology requires multiple vendors to reach consensus.
Another benefit is an increased level of technology specification and an extended life
cycle. Since product developments are in parallel across multiple vendor organizations,
the corresponding marketing activities which create the demand for the technology are
also synchronized and coordinated. A key benefit of open systems technology is the
interoperability that it provides between commercial software vendors. The distinction
between open systems and proprietary technologies is particularly appropriate for object-
oriented systems, which are becoming the mainstream of application development, as
object technology is already the mainstream of commercial technology.

Commercial information technology is evolving. Additional capabilities are being added
and becoming available through commercial technology that increasingly satisfy
application needs. However, there is also a significant amount of reinvention in
commercial technology of fundamental capabilities such as operating systems and
programming languages.

In some commercial technologies, such as office automation, word processors, and
spreadsheets, a continual reorganization of functionality is presented to the end user
without significant extension of capabilities. In many people's view the rate of technology
evolution on the commercial side is relatively slow in comparison to the growth in needs
for competitive application developers. Commercial technology is put forth to satisfy the
needs of large numbers of users. The generality of this software exceeds the need of any
individual application user. In order to adapt commercial technologies to application
needs, there is a requirement for software development and installation which customizes
the commercial software to the needs of specific applications (Figure 2.3).

Figure 2.3. Commercial Software Customization

IT-SC 59

The requirement to customize commercial technology is often called profiling, a concept
that we will cover in more detail in Chapter 4. In addition to the profiling software,
substantial application-specific software is required to create application systems.
Because of the relatively primitive capabilities available commercially for many
application needs, this drives an increasing demand to build more and more application-
specific software to complete the architecture for application systems. As systems evolve
from single-user and departmental-level applications, to the enterprise with greater
interoperability capabilities, the functional gap between available commercial software
and individual user software will continue to increase.

The architecture of applications software systems is increasingly important in how
systems support user needs. The majority of systems that have been created outside of the
telecommunications industry are integrated using procedural and other paradigms which
often lead to ineffective solutions. In fact, for systems created by corporate development
organizations, a majority of the software projects are considered unsuccessful at
completion. From an architectural perspective, many of these systems resemble the
configuration in Figure 2.4 for stovepipe systems. In a stovepipe system there are a

IT-SC 60

number of integrated software modules. Each software module has a unique software
interface. This unique software interface corresponds to a single program implementation.

Figure 2.4. (a) Stovepipe Systems and (b) Component Architectures

When the system is integrated, there are many one-to-one dependencies between various
part of the system. These dependencies are unique integration solutions. As the scale of
the system increases with the number of modules, the number of dependencies increases
by the square of the number of modules. This increase in complexity has many negative
consequences. In particular, as a system evolves it becomes less and less amiable to
modification and extension. System extension happens to be one of the major cost drivers
in application development; it can account for as much as half of all software cost
[Horowitz 93].

An alternative way of architecting systems includes a planned definition of software
interfaces which provide a greater level of uniformity across the integrated solution.
Component architectures are application systems which are defined using consistent
application program interfaces across multiple instances of software subsystems (Figure
2.4). Component architectures reduce the dependency between software modules. The
reduced dependency enables the system to be extended and support larger scales of
integration. A properly architected component system has complexity which scales with
the number of software modules in terms of the complexity of the software integration.

2.3 Client Server Technology

Client server technologies are the result of the evolution of software technology
supporting application systems. In particular, the evolution of client server technologies
has been an important factor in the expansion of information technology across an
increasing range of application business processes. Originally client server technologies
focused on file sharing. File sharing is still the dominant paradigm of the Internet today
with protocols such as HTTP supporting access to global file systems available across the

IT-SC 61

Internet. File server technologies evolve into a second generation of capabilities
dominated by a database server technology. It is important to note that the file server
technologies were closely linked with the evolution of distributed computing
technologies.

Increasingly, client-server technologies are being replaced by N-Tier component-oriented
solutions. Based upon Java application servers, the N-Tier solutions include support for
thin-client user interfaces with increased scalability and reliability.

One of the most successful networking technologies came from Sun Microsystems and is
called network file server. Sun Microsystems was successful in encouraging the de facto
standardization of that technology by providing free reference technology access in terms
of source code for implementation on arbitrary platforms. Network file server technology
is based upon open network computing, another Sun Microsystems technology which
was one of the first successful generations of distributed computer technology. Network
file server was a procedurally based technology closely tied to the C programming
language, as was the other important remote-procedure-call technology called the
distributed computing environment. Both of these technologies resulted in file-sharing
capabilities which were widely implemented. The database server technologies utilized
these underlying distributed computing capabilities to provide remote access to database
systems from a variety of client platforms.

Another important technology that arose during the database generation was that of
transaction-processing monitors. Transaction-processing monitors enable the consistent
and reliable maintenance of data integrity across distributed systems. Transaction
processing technology continues to be an important add-on capability to distributed
computing technologies to ensure robustness and integrity of implementations.

Groupware technologies also arose in the late 80s and early 90s starting with e-mail and
evolving to higher forms of interactivity, some of which we can see on the Internet today,
such as chat rooms and videoconferencing. Recently, the technologies of object
orientation, distributed computing, and the Internet are beginning to merge to support
adaptable computing environments which can scale to global proportions. This
generation of technologies is called distributed objects and is characterized by
technologies such as CORBA and the Java language (Figure 2.5).

Figure 2.5. Origins of Client Server Technologies

IT-SC 62

The client server technologies initially arose as an evolution of mainframe-based
technologies. Mainframe-based technologies were a natural outgrowth of single-
processor systems which date back to the origins of computing. In a mainframe
technology, the processing and management of data in the system is completely
centralized. The mainframe is surrounded by a number of peripheral client terminals
which simply support presentation of information. In the client server generation of
technologies, the client computer has become a significant processing resource in its own
right. Client systems which arose during the personal computer revolution are now
capable of processing speeds which rival and greatly exceed that of former minicomputer
and mainframe computer generations. Initially, in order to support access to data in
departments and enterprises, client server technology supported the connection through
local area networking to the back-end mainframe minicomputer and workstation server
systems. The technology at the software level supporting this communication is called
middleware.
An element "good enough" in a small system is unlikely to be good enough in a more
complex one [Rechtin 97].

Initially, middleware was installed as a custom capability to support client server
networking between PCs and server platforms. As technology evolves, middleware is
becoming embedded in the operating system so that it is a natural capability of client
platforms as well as server platforms. Client systems with embedded middleware can
now support on-board services to applications running locally and across the network.
This evolution of client server technology to an embedded capability has added many
new challenges to the implementation of application systems. In fact, there are various
antitheses to the client server evolution, including a resurgence of the mainframe
platform as a significant business of IBM and the capability called the network computer
which begins to resemble the dumb terminal of mainframe days (Figure 2.6).

Figure 2.6. Role of Middleware

IT-SC 63

Object technologies are organized around client server capabilities. Object technologies
come in two primary categories. Some are organized to serve the process of software
development (Figure 2.7). Examples of these technologies include object-oriented
analysis and object-oriented design. Object-oriented analysis comprises the definition of
information technology capabilities that are models of current and future business
processes. Object-oriented modeling provides rich capabilities for representing business
entities and business processes. This is in contrast to procedural and relational database
technologies, which require the application designer to compromise the representation of
the business environment to the constraints of the technology in terms of control flow and
data representation. Object-oriented analysis, because of the natural correspondence of
state information in process, provides a mechanism for modeling reality which is
relatively easy to communicate with end users. Because the end-user communication is
facilitated, the design and validation of object-oriented systems is greatly enabled.

Figure 2.7. Middleware Reference Model

IT-SC 64

Object-oriented design is another major software phase which has been successful
commercially in the software process market. Object-oriented design comprises the
planning of software structure and capabilities that support the reduction in software
defects and rapid prototyping of software capabilities.

The other major category of object technology focuses on the implementation. At the
center is object-oriented middleware technology. Object-oriented middleware supports
distributed computing and the integration of various heterogeneous software technologies
including operating systems, programming languages, and databases. Object-oriented
programming languages are the direct expression of the object paradigm. Object-oriented
programming languages support the encapsulation of data with process in the form of
abstract data types in component objects. There are numerous object-oriented
programming languages as there are procedural languages. The predominant languages
for object-oriented programming include C++ Smalltalk and the Java language but there
are significant communities supporting Eiffel, and other languages. Object-oriented
middleware allows these languages to interoperate to form applications. Object-oriented
programming languages are one possible choice for implementation of application
software. It is also possible to utilize object-oriented analysis and design to support
programming in procedural languages. This occurs frequently, as many corporate
development environments use procedural languages for their mainstream languages,
such as the C programming language and COBOL.

Another important technology is that of object-oriented database management systems
and their closely related cousin, extended relational database systems. Object-oriented
middleware supports the integration and distribution of all of these database capabilities.
In the case of object-oriented database systems, middleware can support the publishing

IT-SC 65

and access of data objects across distributed heterogeneous systems. Object-oriented
analysis and design are also used in the definition of database capabilities which are then
implemented in ordinary relational technologies. Object-oriented programming languages
can then be used with relational databases to build systems. This practice is commonplace.

Relational database technologies continue to be a practical implementation technology
for many forms of applications. The occurrence of pure object-oriented systems will
continue to be relatively rare as legacy application technologies are carried forward into
future target systems. Distributed object technologies (i.e., component infrastructures) are
appropriate for the integration of legacy applications. The encapsulation capabilities of
distributed object technologies provide some distinct advantages to the integration of
legacy systems and the extension of those systems with new object-oriented capabilities.

One of the important qualities of object orientation is that the developer should not have
to be concerned about the underlying implementation. If the underlying implementation
is procedural or is object-oriented, it should not and does not matter if the applications are
properly encapsulated. Distributed object middleware supports the opaque encapsulation
property which makes this possible. The integration of commercial software with legacy
and object-oriented applications is also enabled due to these encapsulation properties
(Figure 2.7).

Object-oriented middleware technologies can be viewed as an outgrowth of their
procedural producers. Beginning with operating systems, procedural technologies
supporting interprocess communication were added to enable file sharing and the
evolution of client server capabilities (Figure 2.8). Some of these technologies include
the remote-procedure-call technologies such as ONC and DCE. The remote-procedure-
call technologies were preceded by socket-level technologies, which are a more primitive
form of messaging. Today, all of these technologies are still used actively in application
systems and on the Internet. The object-oriented middleware technologies provided a
next generation of capabilities which bundled more of the application functionality into
the infrastructure.

Figure 2.8. Distributed Technologies in Context

IT-SC 66

It is interesting to note that previous generations of interprocess communication
technology were marketed with the promise of universal application interoperability.
Component-oriented technology is marketed the same way today. Distributed object-
oriented middleware has the advantage of retrospection on the shortcomings of these
previous technology generations. It was found that even though remote-procedure-call
technologies enabled the integration of distributed software, the primitive level of these
technologies required substantial application programming in order to realize systems.
Once the systems were implemented, the systems tended to be fairly brittle and difficult
to maintain. We can see many of the same shortcomings in the current generation of the
component object model from Microsoft.

Microsoft, in 1996, released the distributed component object model (DCOM) as a
multimedia middleware technology for the Internet. DCOM still exposed many of the
lower-level primitive details which were the downfall of remote procedure calls. DCOM
added some object-oriented capabilities and a natural integration support for C++
programming. Simply adding the capability to support C++ doesn't necessarily overcome
the procedural route that exposed excessive complexity to distributed system developers
in the DCOM predecessor called the distributed computing environment.

The common object request broker architecture for CORBA was the first technology to
be designed from the ground up to support distributed object-oriented computing.
Figure 2.8 shows that there is a partitioning of a technology market between the
Microsoft technology base and virtually all other information technology vendors. The
other vendors support various open system technologies that are the result of consensus
standards processes. CORBA is universally accepted as the vendor-independent standard
for distributed object middleware. CORBA simplifies distributed computing in several
ways. The most significant advance is the language independence that CORBA provides,
allowing multiple programming languages in heterogeneous environments to interoperate
using object messaging.

IT-SC 67

Above the middleware layer are other technologies which support further integration of
application functionality. In the Microsoft technology base, they have grouped these
technologies into a brand name called ActiveX. The ActiveX technologies are being
obsolesced and replaced with Windows 2000+ technologies called COM+. The COM+
technologies include a substantial reinvention of middleware capabilities that eliminate
interface definition languages, and it is likely that the language independence of the
middleware will be compromised. The COM+ technologies are not yet available in a
robust development configuration. The CORBA capabilities are widely available today
and support multiple programming-language integration from multiple vendor platforms.
Layered on top of the CORBA capabilities are various other technologies, some of which
are still in development. These include JavaBeans and the CORBA component model,
which is the distributed heterogeneous extension of JavaBeans technology.

CORBA technologies are the product of an open systems consortium process called the
object management group, or OMG. The OMG has over 700 member organizations
including all major vendors in the information technology, such as Sun Microsystems,
Hewlett Packard, IBM, Netscape, and Microsoft. The OMG has addressed the problem of
application software interoperability by focusing on the standardization of programming
interfaces. With previous generations of remote-procedure-call technologies, the only
widely adopted standard interface was the network file server, which is really the most
primitive form of software interoperability beyond exchange of removable media. It is
important for end users to provide their requirements and interact with open systems
processes because they shape the form of technologies which will be used for end-user
system development. In particular, sophisticated users of technologies can encourage
open systems consortia and software vendors to provide more complete capabilities to
enable the development of complex systems. This reduces technology risk and creates
more leverage for application developers.

The CORBA technologies are centered around the object request broker which the
component standardizes (Figure 2.9). In the object management architecture which is
the route node of OMG diagrams, there are several categories of objects. The object
request broker is distinguished because it is the object through which all the other
categories of object communicate. The object management architecture is conceptually a
layered architecture which includes increasing levels of specificity for domain application
implementation. The most common capabilities embodied by object technologies are
standardized through the object request broker. The next level of capabilities are called
the CORBA services, which provide enabling functions for systems implementation. The
CORBA services are comparable in functionality to current operating-system services
which are commonly bundled with platforms. The CORBA services provide the first step
toward a distributed operating system capability which supports the integration of
application software and commercial software across all types of platforms and
environments.

Figure 2.9. Object Management Architecture

IT-SC 68

The next level of capabilities is called the CORBA facility. CORBA facilities are
common horizontal functions which may not be appropriate in every application domain.
These functions include system management and compound document as well as printing
and other capabilities. The CORBA domains are standard interfaces for the direct support
of application domain interoperation. The application domains include health care,
manufacturing, finance, and many other categories. The final category of distributed
objects is the application objects. These include all of the other interfaces which will not
be explicitly standardized. Application object interfaces include commercial proprietary
interfaces, as well as custom interfaces that are built for a particular application system.

CORBA technology is widely available today and is a mainstream technology available
on virtually every operating-system platform. Some of the more innovative platforms,
including the Netscape Communicator which could be considered an operating-system
platform in its own right, are bundling CORBA with all of their deliverable licenses.
Microsoft also supports the CORBA technology market by delivering specifications that
enable interworking with the Microsoft infrastructure workings. The OMG has
standardized interworking specifications for both COM and COM+ generations of
Microsoft technologies. These standards are available on products on major CORBA
implementation systems today.

In addition, third-party vendors are providing direct support for CORBA. These include
vendors like Black and White software who provide graphical user interface development
tool kits, database vendors, system management vendors, and specialty market vendors
such as realtime and computer-aided software engineering tools. The key capability that
CORBA provides, which is fundamental to object orientation, is the interface definition
language. The interface definition language is a notation for defining software boundaries.
IDL is a specification language which enables the description of computational software
architectures for application systems as well as international standards for interoperability.

IT-SC 69

The interface definition language from CORBA has also been adopted by the
international standards organization and the formal standards counterparts for
telecommunication systems. IDL is the international standard DIS14750. As such, IDL is
a universal notation for defining application program interfaces in software architectures.
Because IDL is programming-language independent, a single specification will suffice
for defining software interfaces on any language or platform environment. IDL interfaces
support object-oriented designs as well as the integration of legacy software. Since the
object management group is the only major standards consortium developing object-
oriented standards specifications for software interfaces, IDL is synonymous with object
technology open system.

IDL supports the integration of a diverse array of programming languages and computing
platforms (Figure 2.10). With IDL one can specify software interfaces that are
compiled and readily integrated to available programming languages. These capabilities
are available commercially and support distributed communication in a general manner.

Figure 2.10. Technology Independence of the Interface Definition Language

In this section, we have discussed how mainframe technology has evolved into client
server technologies with middleware providing the distributed computing software
capabilities. Because client server technologies have merged with object technologies, it
is now possible to provide object-oriented capabilities that augment legacy systems
across most or all programming environments. In addition, interoperability between
CORBA and the Microsoft counterpart called COM+ enables the coverage of popular
platforms on many organizational desktops. The vendors supporting open systems also
support CORBA. The dominant Internet vendors are delivering CORBA and associated
protocol stacks to numerous licensees. CORBA is the standard for object-oriented

IT-SC 70

middleware. The products are available now as well as the horizontal services
specifications that enable application development. The OMG is proceeding to develop
the vertical specifications that will provide direct support for application-level
interoperability.

The ISO has supported the designation of CORBA IDL as a standard for the definition of
software interfaces across all computing environments.

Object orientation is a natural paradigm for modeling real-world information and
business processes. Object technology supports the integration of heterogeneous and
distributed information technologies that include legacy systems (Figure 2.11).
Combining object orientation and component technology enables the creation of
ambitious system concepts which are increasingly becoming the competitive advantage
of application companies and end users.

Figure 2.11. Interoperability Vision for Object Technology

2.4 Software Application Experience

In the commercial end-user environment, object technology has been applied to many
important applications which enable business advantages. Examples include Fidelity
Investments, one of the world's largest mutual fund companies, which as long as five

IT-SC 71

years ago integrated its fund management workstations to support the integration of
multisource information including decision-support capabilities that are crucial to the
fund management business. The infrastructure they chose was an object request broker
implementation conforming to the CORBA standard. Using CORBA, Fidelity
Investments is able to customize the information gathering and analysis environment to
the needs of individual fund managers. Many readers of this book probably have funds
invested in one or more of the securities supported by CORBA. Wells Fargo, a large
banking institution, has also applied object technologies to multiple applications to derive
competitive advantages. One example is a financial transaction system which was
developed and prototyped and deployed in less than five months based upon an object
technology and CORBA implementation. In that system they integrated mainframe
environments running IBM operating systems with minicomputer environments serving
the on-line transaction terminals. In another Wells Fargo application, they integrated
heterogeneous systems to support system management across a large enterprise. System
management is one of the challenging and necessary applications which client server has
created because the operation and management of information technology is no longer
centralized and needs to be coordinated across many autonomous departmental systems
as well as user desktops. Wells Fargo took advantage of object technology to implement
such a distributed system management capability and greatly reduced their expense and
response capabilities for system support challenges.

Another dramatic example of object technology was implemented by a large insurance
provider. USAA had an auto claims system which was utilized by customer service
agents to receive reports of damage claims over the telephone. USAA in addition to auto
insurance has a number of other related product lines including life insurance and loan
capabilities. By integrating their information technology using objects, USAA was able
to provide the customer service agents with information about the full range of USAA
product lines. When a customer called with an auto damage claim and the car was totaled
and needed to be replaced, the customer services agents were able to process the
insurance claim and offer a new car loan for the replacement of the vehicle. In addition,
the customer service agent had information about customers such as the ages and number
of children and was able to offer additional insurance coverages at the appropriate time
frames during this same auto claim call. With these enhanced capabilities, essentially
reengineering its customer service process, USAA was able to realize 30% increased
revenue on its existing customer base by providing additional services to the customers
who were calling USAA for auto claims purposes.

In the public sector, object technology has also been applied and delivered significant
benefits. Several examples were implemented through the work of the authors on a
project called discus, which is data interchange and synergistic collateral usage study.
This project and its lessons learned are described in detail in another book, The Essential
CORBA. One of the first lessons learned on discus was the power of using object
technology to reuse design information. Once software interfaces were established and
specified using IDL, it was relatively inexpensive to have contractors and commercial
vendors support interoperability interfaces. The discus capabilities were defined before
the Internet revolution, and when it became appropriate to integrate Internet capabilities,
the same encapsulations were equally applicable to integrating new ways of viewing the

IT-SC 72

data through Internet browsers. The existing legacy integrations implemented by discus
were then used to extract information for viewing on Internet browsers.

Another case study implemented by the authors involved a set of information access
services, which is a case study documented in another book, Inside CORBA. In this
application, we discovered that the government had implemented a variety of systems
with similar capabilities and the end users needed these systems to interoperate to support
expanded access to information resources. The application we are describing does not
differ in substance from the environment required by the Fidelity Investment Managers—
in other words, gathering information from diverse resources in order to support
important decisions. In order to resolve the users' needs, we conducted a study of existing
systems that focused on the software interfaces supported through multiple technologies.
By learning the details of the legacy system interfaces, we could formulate new object-
oriented designs that captured the existing functionality in a manner that was common
across the legacy system environment. By committing the new interface design to an IDL
specification, we were able to work with other contractors to implement prototypes and
forward the specifications through government standardization processes. Within two
years, the interoperability concept evolved from ground zero to working software
including a formal test sweep that assured conformance between multiple
implementations of the specification.

There is an opportunity in many enterprises to realize these kinds of results. Because
information technology in large enterprises is evolving from desktop and departmental
information systems to interoperable enterprise systems, there is layer of enterprise
architecture which does not exist in most organizations and can be implemented using
distributed-object technologies in a manner that provides interoperability in a general
way.

Let us summarize this section. Commercial organizations have realized many benefits
from object technology that are directly relevant to their corporate competitive
advantages. The authors' experiences in research and development show that design reuse
is one of the most important concepts to apply in realizing these kinds of results. Given a
proper software interface specification, it is relatively easy for software developers to
understand the specification through training processes and then proceed to implement
the specifications. A much more difficult problem would be to ask developers to integrate
systems without this kind of guidance. In other words, reinventing a new custom
interoperability link is significantly more difficult than if you give the developers a
design for how the systems interoperate and they simply have to implement the code to
implement that capability. In our research and development we found these kinds of
benefits even at the smallest scales where only two or three subsystems were being
integrated; as the scale of integration increased up to seven or ten or more systems, the
benefits also increased.

Systems interoperability is achievable today through object technology, and these
benefits are being realized in existing commercial systems and in system procurements in
the public sector.

IT-SC 73

2.5 Technology and Application Architecture

Software architecture involves the management of both application functionality and
commercial technology change. The kinds of benefits we just mentioned are not the
direct result of adoption of a particular technology but involve exploiting the technology
in ways that are most effective to realize the business purpose of the system. The simple
decision to adopt CORBA or COM+ is not sufficient to guarantee positive business
outcomes. One of the key challenges is managing the change in commercial technologies
in a manner that supports long-term system life cycles and the ability to extend the
system without substantial maintenance as the commercial technology evolves.

Figure 2.12 is an example of the class of technology challenges which must be
managed by object-oriented architects. Figure 2.12 concerns the evolution of
middleware technologies, starting with the socket technologies and evolving into remote
procedure calls and distributed computing environment to the current Java 2 Enterprise
Edition (J2EE) and ActiveX technologies. No one can reliably predict the future, but
given what is known about proprietary technology evolution as well as open systems
evolution, it is likely that many of the technologies that are becoming popular will
eventually have their own life cycle, which has a distinct ending point based on when the
software vendors discontinue their product support and move their attention to new
product lines. This particular technology evolution in middleware has some dramatic
effects on application software because the middleware is closely integrated with many of
the emerging application capabilities. When a technology like ActiveX becomes obsolete
has it then become necessary to upgrade application systems to the new technologies in
order to maintain vendor support and integration of new capabilities. We can already see
the demise of ActiveX on the horizon as COM+, a succeeding technology, will replace
core elements of its technology. The software interfaces are likely to be quite different,
especially because COM and COM+ are based upon an interface definition language, not
the same one as CORBA, and COM+ doesn't have an interface definition language, at
least in terms of current marketing information. It is important for the software architect
to anticipate these kinds of inevitable changes and to plan the migration of application
systems to the new technologies in a manner which doesn't mitigate the business purpose
of current system development.

Figure 2.12. Managing Technology Change

IT-SC 74

There are many challenges to the architect in the application space. Some of the most
strenuous challenges involve the changing business processes which current businesses
are undergoing. There is increasing competition from all sectors and a merger of
capabilities through technologies like the Internet, newspapers, computer companies,
cable television vendors, and telecommunications operators are starting to work in the
same competitive spaces and are experiencing significant competitive pressure that is the
direct result of information technology innovations and innovative concepts implemented
in application systems. Even with previous generations of technologies it is fairly well
known that requirements change a great deal. In fact, the majority of applications costs
for software development can be traced directly to requirements changes [Horowitz 93].
For the first time in history, information technology budgets are exceeding payrolls in
many organizations in industries such as financial services. Information technology is
becoming synonymous with competitive advantage in many of these domains. However,
the basic capabilities of system development are still falling far short of what is needed to
fully realize competitive capabilities. For example, in corporate development, one out of
three systems that are started end up in a project cancellation [Johnson 95]. These types
of statistics represent inordinate risk for small and medium-size businesses, given the
increasing cost and dependence upon information systems.

One of the fundamental rules of thumb of computing is that no technology ever truly goes
away. One can imagine some early IBM minicomputers that are still faithfully
performing their job in various businesses around the world. As information technology
evolves, the need to integrate an increasing array of heterogeneous systems and software
starts to become a significant challenge. As we integrate across enterprises and between
enterprises using intranets and extranets, the architecture challenges become substantial.
One problem is the current inadequacy of information technology infrastructure,
including technologies like COM+ and CORBA which differ from the real application

IT-SC 75

needs in some significant ways. As the challenges of information technology continue to
escalate, there is another problem with the software skill base. In many industries, there
are substantial shortages of software engineers. It is estimated that there is at least a 10%
negative unemployment level in the United States in the software engineering profession.
Some industries are much harder hit than others, including public sector systems
integration contractors. In order to build systems with that challenge in mind, the object-
oriented architect needs to plan the system development and control the key software
boundaries in a more effective manner than has ever been done before.

Many critical challenges lie ahead for application systems developers and software
architects. There is an escalating complexity of application system development. This is
driven by the increasing heterogeneity of information systems and the need to integrate
increasing scopes of systems both within and outside the company. In addition, the user
requirements are increasing the user expectations, due to exposure to Internet
technologies and other marvels of modern life and are driving software developers to take
increasing risks with more complicated and ambitious systems concepts. The key role of
the object-oriented architect is the management of change. Managing commercial
technology innovation with its many asynchronous product life cycles is one area.
Another area is managing the changing business processes which the information
technology supports and implements. One area of potential solutions lies in the users
influencing the evolution of open systems technologies, influencing software vendors to
provide whole technology capabilities, and influencing legislators to put in place the
appropriate guarantees of merchantability and fitness for purpose that underlie the
assumptions in system architecture and development.

2.6 Applying Standards to Application Systems

In the adoption of object-oriented architectures and technologies, many common
questions are raised which must be resolved in order to fully understand the implications.
We have already discussed questions of defining object orientation and the component
technologies which comprise object technologies. We have also touched on how object
technologies compare with others, such as procedural technology.

Many other questions and requirements are crucial to certain categories of applications.
Questions about performance, reliability, security on the Internet and how these
technologies integrate with vendors that have significant market share are all important
considerations in the adoption of these technologies. In the next few chapters we explain
some of the fundamental concepts that describe the commercial and application sides of
object-oriented architecture. We further make the case of the application of open systems
technologies in object-oriented software development practice. We also address
application development issues on applying object technology, integration of legacy
systems, and the impact of these technologies on procurement and development processes.

It is important to understand that commercial technologies based upon open systems
evolve according to certain underlying principles. These principles are clearly defined
through a model developed by Carl Cargill that describes the five stages of
standardization (Figure 2.13). To initiate an open systems standards process it is

IT-SC 76

necessary to define a reference model. A reference model defines the common principles,
concepts, and terminology that are applied across families of standards. These reference
models also apply to object-oriented architectures and the integration of application
systems. Reference models are an element often missing in software engineering
processes that are addressing complex issues. Developing a formal reference model
through a formal open systems process takes a considerable amount of effort from
numerous people.

Figure 2.13. The Five Stages of Standardization

A typical reference model from the international standards organization may take up to
ten years to formulate. Based upon a reference model, a number of industry standards can
be initiated and adopted on a somewhat shorter time scale for formal standardization; this
ranges up to seven years. Both reference models and industry standards are usually the
intellectual product of groups of technology vendors. The standards represent the most
general common denominator of technologies across the largest consumer base. In order
to apply these technologies, it is necessary to define a number of profiles which serve the
role of reducing the complexity of applying the standard within a particular domain or set
of application systems (Figure 2.13).

There are two different kinds of profiles. Functional profiles define the application in
general terms of a standard for a specific domain. Typical domains might include
mortgage lending or automobile manufacturing. The functional profiles define the
common usage conventions across multiple companies within the same industry.
Functional profiles can be the product of information technology vendors but usually are
a joint product between the users of technology and the vendors.

The next level of profiles is called system profiles. System profiles define how a
particular family of systems will use a particular standard or set of standards. The family

IT-SC 77

of systems is usually associated with a certain enterprise or virtual enterprise. For
example, a set of electronic data interchange standards for the Ford Motor Company
define how the company and its suppliers for the manufacturing process can provide just-
in-time inventory control so that Ford's assembly lines can proceed in an organized
fashion without interruptions.

Above system profiles there are application systems, which are specific implementations.
Even though the concept of profiles is new to many software engineers, profiles are
implemented, perhaps implicitly, in all systems. Whenever a general-purpose standard or
a commercial technology is applied, decisions are made regarding the conventions of
how that technology is used, and those decisions comprise a profile. Unfortunately, many
of the important profiles are buried in the implementation details of information systems.
Notice that, in Figure 2.13, the time scales for developing each of the types of
specifications is decreasing. The intention is that the reference models provide a stable
architecture framework for all of the standards, profiles, and systems that are developed
over a longer term. The industry standards provide the next level of stability and
continuity, the profiles provide stability and consensus across domains and application
families, and all of these mechanisms support the rapid creation of application systems on
the order of half a year to a year and a half.

Figure 2.14 shows the breakout of reference models and profiles from the perspective
of a particular vendor of information technology. In general, a vendor is working from a
single reference model that spans a number of industry standards. The vendor implements
technologies conformant with these standards and then works with various application
developers and vertical markets to define the usage of the technology for valuable
business systems. There is a multiplying factor for vendors in this approach in that for a
small group of vendors there are potentially numerous customers that are enabled by the
technologies that they supply.

Figure 2.14. Standards from the Vendor's Perspective

IT-SC 78

Figure 2.15 portrays the concept from the perspective of the end-user application
developer. We find this diagram somewhat amusing in a dark sense, but very
representative of the kind of challenges that object-oriented architects in all kinds of
information technology are facing today. For a given application system numerous
standards and reference models are potentially applicable to the development of that
system. A smaller number of functional profiles and system profiles can be obtained off
the shelf to guide application system development. In general there is a gap between the
application implementations and the industry standards in the area of profiling. Because
profiling is primarily the responsibility of users, it's appropriate to say the users are to
blame for this gap in guidance.

Figure 2.15. Standards from the User and Application Developer's
Perspective

IT-SC 79

When profiles are not agreed to between application system projects, the likelihood is
that the systems will not be interoperable, even though they are using identical industry
standards and even products from the same vendors. This can be a confusing and
frustrating situation for application architects. It is necessary to understand these
principles in order to resolve these kinds of issues for future system developments.

2.7 Distributed Infrastructures

Earlier, we introduced the concept of middleware that provided the software
infrastructure over networking hardware for integrating server platforms with computing
clients, which may comprise complete platforms in their own right.

Distributed infrastructure is a broad description for the full array of object-oriented and
other information technologies from which the software architect can select. Figure
2.16 shows the smorgasbord of technologies available on both client server and
middleware operating system platforms [Orfali 96]. On the client platform, technologies
include Internet Web browsers, graphical user interface development capabilities, system
management capabilities, and operating systems. On the server platform we have a
similar array of technologies including object services, groupware capabilities,

IT-SC 80

transaction capabilities, databases, and others. As we said before, the server capabilities
are migrating to the client platforms as client server technologies evolve. In the
middleware arena, we also have a fairly wide array of client server capabilities. These
include a large selection of different transport stacks, network operating systems, system
management environments and specific services. These technologies are described in
significant detail in a book that we recommend by our friends Bob Orfali, Dan Harkey,
and Jeri Edwards, The Client Server Survival Guide [Orfali 96].

Figure 2.16. Infrastructure Reference Model

Some of the key points to know about client server technologies include the fact that the
important client server technologies to adopt are the ones that are based upon standards.
The great thing about standards is that there are so many to choose from. A typical
application portability profile contains over 300 technology standards. This standards
profile would be applicable to a typical large-enterprise information policy. Many such
profiles have been developed for the U.S. government and for commercial industry. The
information technology market is quite large and growing. The object-oriented segment
of this market is still relatively small but is beginning to comprise enough of the market
so that it is a factor in most application systems environments.

As standards evolve, so do commercial technologies. Standards can take up to seven
years for formal adoption but are completed within as short a time as a year and a half
within consortia like the OMG. Commercial technologies are evolving at an even greater
rate, trending down from a three-year cycle that characterized technologies in the late 80s
and early 90s down to 18-month and one-year cycles that characterize technologies today.
For example, many vendors are starting to combine the year number with their product
names, so that the obsolescence of the technology is obvious every time you invoke the
program and users are becoming increasingly compelled to upgrade their software on a
regular yearly basis. Will vendors reduce innovation time to less than one year and
perhaps start to bundle the month and year designation with their product names?

IT-SC 81

The management of compatibilities between product versions is an increasingly difficult
challenge, given that end-user enterprises can depend upon hundreds or even thousands
of individual product releases within their corporate information technology
environments. A typical medium-sized independent software vendor has approximately
200 software vendors that it depends upon in order to deliver products and services,
trending up from only about a dozen six years ago. Figure 2.17 shows in more detail
how commercial technologies are evolving in the middleware market toward increasing
application functionality. Starting with the origins of networking, protocol stacks such as
the transmission control protocol (TCP) provide basic capabilities for moving raw data
across networks.

Figure 2.17. Evolution of Distributed Computing Technologies

The next level of technologies includes the socket services which are available on most
platforms and underlie many Internet technologies. These socket services resolve
differences between platform dependencies. At the next layer, there are service interfaces
such as transport-layer independence (TLI), which enabled a substitution of multiple
socket-level messaging services below application software. As each of these
technologies improves upon its predecessors, additional functionality which would
normally be programmed into application software is now embodied in the underlying
infrastructure. One consequence of this increasing level of abstraction is a loss of control
of the underlying network details in qualities of services which were fully exposed at the
more primitive levels. Beyond transport invisibility, the remote-procedure-called
technologies then provide a natural high-level-language mechanism for network-based
communications. The distributed computing environment represents the culmination of
procedural technologies supporting distributed computing. Object-oriented extensions to
DCE, including object-oriented DCE and Microsoft COM+, now provide mechanisms for
using object-oriented programming languages with these infrastructures.

IT-SC 82

Finally, the CORBA object request broker abstracts above the remote procedure's
mechanisms by unifying the way that object classes are referenced with the way that the
individual services are referenced. In other words, the CORBA technology removes yet
another level of networking detail, simplifying the references to objects and services
within a distributed computing environment. The progress of technology evolution is not
necessarily always in a forward direction. Some significant technologies that had
architectural benefits did not become successful in the technology market. An example is
the open doc technology, which in the opinion of many authorities had architectural
benefits that exceed current technologies like ActiveX and JavaBeans.

Standards groups have highly overlapping memberships, with big companies dominating
most forums. Groups come and go with the fashions of technological innovation.
Recently Internet forums (W3C, IETF) have dominated, as well as JavaSoft and
Microsoft open forums.

Many networking and open systems technologies as well as other object-oriented
standards are the products of now defunct consortia. The consortium picture is dynamic.
Some of the former consortia such as the Open Software Foundation and X Open are now
merged to form The Open Group. Other consortia, such as the Object Management
Group and the Common Open Software Group, are highly overlapping in membership. A
recent addition to the consortium community has been the Active Group. The Active
Group is responsible for publishing technology specifications for already released
technologies developed by Microsoft (Figure 2.18). The Open Software Foundation
originated the distributed computing environment which supports remote procedure calls
as well as other distributed services. The distributed computing environment is the direct
predecessor of the Microsoft COM+ technologies. Distributed computing environment
represents the consensus of a consortium of vendors outside Microsoft for procedural
distributed computing.

Figure 2.18. Commercial Software Technology Consortia

IT-SC 83

Along with CORBA, the distributed computing environment is a mainstream technology
utilized by many large-scale enterprises (Figure 2.19). One important shortcoming of
the distributed computing environment is the provision of a single-protocol-stack
implementation. As distributed computing technologies evolve, it becomes increasingly
necessary to provide multiple network implementations to satisfy various quality-of-
service requirements. These requirements may include timeliness of message delivery,
performance, and throughput, reliability, security, and other nonfunctional requirements.
With a single-protocol-stack implementation, the developers of applications do not have
the capability to provide the appropriate levels of service. The technology gap described
here is properly described as access transparency, a term defined by an
international standards organization reference model that we cover in Chapter 9.
Proper object-oriented distributed computing infrastructures do provide access
transparency and give developers the freedom to select the appropriate protocol stacks to
meet the application quality-of-service requirements.

Figure 2.19. Distributed Computing Environment

IT-SC 84

Figure 2.20 shows the infrastructure technologies from the Microsoft COM+ and
ActiveX product lines. The basis of these technologies for distributed computing came
from the original OSF environment, but that technology was extended in various ways
with proprietary interfaces that also support the use of C++ programs in addition to the C
program supported by DCE. The ActiveX technologies have a partition between
capabilities which support distributed computing and capabilities which are limited to a
single desktop. The capabilities which are desktop specific include the compound
document facilities. Compound document facilities support the integration of data from
multiple applications in a single office document. When moving a document from
desktop to desktop, there can be complications because of the lack of complete
integration with the distributed environment.

Figure 2.20. ActiveX Technology Elements

IT-SC 85

Figure 2.21 shows some of the underlying details of how the component object model
and COM+ model interface with application software. Application software is exposed to
Microsoft generated function tables which are directly related to the runtime system from
Microsoft Visual C++. The consequence of this close coupling between Visual C++ in
applications software is that the mapping to other programming languages is not
standardized and in some cases is quite awkward—for example, when ordinary C
programs are applied with the COM+ infrastructure. The CORBA technologies provide a
resolution of some of these shortcomings.

Figure 2.21. Component Object Model

IT-SC 86

Figure 2.22 shows the basic concept behind an Object Request Broker (ORB). The
purpose for an ORB is to provide communications between different elements of
application software. The application software providing a service is represented by an
object. This object may encapsulate software which is not object oriented. An application
client can request services from an object by sending the request through the ORB. The
CORBA mechanism is defined to help simplify the role of a client within a distributed
system. The benefit of this approach is that it reduces the amount of software that needs
to be written to create an application client and have it successfully interoperate in a
distributed environment.

Figure 2.22. Object Request Broker Concept

Figure 2.23 shows some of the finer-grained details from the CORBA model. 2.23
relates to Figure 2.22 in that we are showing client and object software interoperating
through an object request broker infrastructure. The part of the infrastructure which
CORBA standardizes is limited to the shaded interfaces between the application software
and the ORB infrastructure. CORBA does not standardize the underlying mechanisms or
protocol stacks. There are both benefits and consequences to this freedom of

IT-SC 87

implementation. Because different implementors have the ability to supply different
mechanisms and protocol stacks underneath CORBA interfaces, a diversity of products
support this standard and provide various qualities of service. Some implementations, in
fact, provide dynamic qualities of service that can vary between local and remote types of
invocations. The consequence of this freedom of implementation is that the mechanisms
selected may not be compatible across different vendors. An additional standard called
the Internet Inter ORB Protocol (IIOP) defines how different ORB mechanisms can
interoperate transparently. The implementation of IIOP is required for all CORBA
products.

Figure 2.23. Key Interfaces in CORBA Architecture

The CORBA infrastructure provides two different kinds of mechanisms on both the client
and implementation sides of the communication services. On the client side, the client
developer has the option of using precompiled stub programs that resemble ordinary calls
to the application software. The use of static stubs minimizes the special programming
which is required because the application is potentially distributed. The stub programs
appear like local objects in the application environment, but the stubs represent a proxy
for the remote object.

The client developer has the option of using dynamic invocation (Figure 2.23).
Dynamic invocation is an interface that enables the client to call an arbitrary message
invocation upon objects that it discovers dynamically. The dynamic invocation gives the
CORBA mechanism extensibility which is only required in certain kinds of specialty
applications. These applications might include program debuggers, mobile agent
programs, and operating systems. The implementor of object services in the CORBA
environment also has the capability to choose static invocation or dynamic invocation.
The two options are generated as either static skeletons or dynamic skeletons.

IT-SC 88

The skeletons provide the software which interfaces between the ORB's communication
infrastructure and the application program, and they do so in a way which is natural to the
software developer. By using dynamic skeletons with dynamic invocation in the same
program, interesting capabilities are possible. For example, software firewalls, which
provide filtering between different groups of applications, can easily be implemented by
these two dynamic capabilities.

Figure 2.24 shows the CORBA technologies in the object management architecture
and how these technologies relate to the Cargill model that we discussed earlier. The
object management architecture shown in Figure 2.9 provides a reference model for all
the CORBA technologies. CORBA and the related standards, such as CORBA services
and CORBA facilities, are examples of industry standards that apply broadly across
multiple domains.

Figure 2.24. Extensions of the Object Management Architecture

The CORBA domains comprise functional profiles in the Cargill model. In other words,
the CORBA domain interface specifications represent domain-specific interoperability
conventions for how to use the CORBA technologies to provide interoperability. Finally,
the application objects in the object management architecture correspond directly with
the application implementations in the Cargill model.

Other initiatives (besides CORBA) have attempted to specify comprehensive standards
hierarchies. First Taligent, then IBM in San Francisco attempted to define object
standards frameworks, but neither garnered the expected popularity. Java J2EE has come
closest to achieving the vision, and in our opinions represents outstanding progress
toward completing the standards picture.

IT-SC 89

2.8 Conclusions

In this chapter we introduced the fundamental concepts of object orientation, open
systems, and object-oriented architectures. We learned that object orientation helps to
isolate changes in software systems by combining the data and processing into modules
called objects. Object technology is a capability which is already present and entering the
mainstream of software development. Object technology is broadly supported by
commercial industry through software vending and by many mainstream end-user
organizations in their application development.

We learned that the only sustainable commercial advances are through open systems
forms of commercial technology. With proprietary technologies, the obsolescence of
capabilities conflicts with the need to build stable application environments which
support the extension of application functionality.

We learned that stovepipe systems are the pervasive form of application architecture but
can be reformed into more effective component object architectures. In the next chapter
we will describe object technologies and various reference models which make these
technologies understandable.

In this chapter we talked about one of the key concepts in object-oriented architecture—
the application of standards in software development. Proper understanding of how
standards are utilized is very important to the successful exploitation of commercial
technologies and the interoperability of application functions.

In this chapter we also described object-oriented client server technologies with a focus
upon the underlying distributed computing capabilities and how they compare with
related technologies from the procedural generation. We discovered that the companies
supplying these technologies have highly overlapping interests which are expressed
through commercial standards consortia and formal standards bodies. We discussed how
distributed computing environments vary from the CORBA mechanism to the Microsoft
technologies that are more closely related to remote procedure call. Finally, we described
some of the details of CORBA infrastructure and how they relate to the Cargill model.

In conclusion, a wide range of open systems client server technologies support object
orientation. These technologies enable the construction of a wide array of distributed
systems based upon objects and components.

2.9 Exercises

Exercise 2.1

Assess the state of your current organization (or customer) with respect to the adoption of
software paradigms. Prepare a short status assessment document containing
recommendations for resolving any gaps in the current skill base.

Background for Solution:

IT-SC 90

First look at the programming languages being used. Most procedural and OO
organizations adopt single-language solutions. Then examine the training requirements.
How much training is each developer required to have? We know of major IT
organizations that require 9 weeks to as much as 26 weeks of training before they turn
developers loose on the shop floor. At a bare minimum, we'd suggest 3 weeks. Suppose
we're pursuing the OO paradigm. The recommended training is 1 week for "thinking
objects," 1 week for OO programming, and 1 week for distributed systems development
process and practice, e.g., experiencing systems building in a training environment. These
are the recommended absolute minimums. Some of the smartest companies require much
more.

Exercise 2.2

Assess the state of architectural control within your organization. Are you heavily
dependent upon the architecture of a single vendor or set of vendors? What elements of
the architecture do you control in a vendor-independent manner? Create a list of
recommendations for resolving any discrepancies or shortcomings due to excessive
vendor dependency.

Background for Solution:

Ask people, "What is our architecture?" If the answer is Oracle or Microsoft, you should
be concerned. These are honorable vendor firms, but in our way of thinking, what
vendors do is not application architecture. Simple selection of a technology is not
sufficient to resolve architectural forces. At a minimum, your enterprise architecture
should describe the deployment of technologies and customization conventions for how
products are used consistently across systems development. Ideally, your organization
has its own APIs that resolve key interoperability issues, as well as rigorously maintained
profiles for technology utilization.

Exercise 2.3

Assess the state of middleware technologies in your organization (or customer). Identify
which technologies are utilized, and how effectively they are exploited.

Background for Solution:

In our experience, there is a very high correlation between the technologies utilized and
the architecture practices. If you are using several middleware infrastructures in a single
application, you are most likely to have ad hoc architecture practices and relatively
unmaintainable systems. In the era of CORBA enlightenment, begin to recognize the
folly of this approach. Many organizations, being conservative, chose DCE as their
corporate middleware solution. However, DCE remains a relatively brittle infrastructure
(originating from the "C" procedural generation of technologies). Early adoptions of
CORBA frequently resemble DCE-like solutions. As these organizations mature in their
use of distributed computing, there is a corresponding flowering of architectural practices.

IT-SC 91

Eventually, solid architecture frameworks like RM-ODP become quite attractive to these
organizations, because they help architects think much more effectively about managing
infrastructure.

Exercise 2.4

Describe a case-study experience for your organization as a useful lesson learned for
other developers. Which products, versions, and platforms were utilized? How did you
use and customize the applications to meet the needs of the application?

Background for Solution:

A case study or "experience report" is quite different than a design pattern although they
both share lessons learned. A case study is a specific instance of a successful solution. As
you write this up, think about answering the questions that would be most useful to
developers encountering a new architecture problem. What elements of the solution are
most reusable, in a way that saves time and eliminates risk for readers about to define a
new system architecture?

Exercise 2.5

Describe the infrastructure dependencies of one or more current applications in your
organization. How would you re-architect these systems in their next generation to
accommodate technology change more effectively?

Background for Solution:

The worst case is if you are applying vendor technologies without profiling conventions
and user-defined APIs. Unfortunately, the worst case is also typical of most organizations.
Suppose a vendor provides 300 APIs to access its product. Your developers will use
alternate sets of APIs for each project and even within a single system. If you want to
migrate to something else, you have a supreme challenge. Consistency in use of product
features can work wonders for enabling interoperability and maintainability. The user-
defined APIs, although proprietary, are very much under control and not likely to be
vendor specific, e.g., CORBA IDL interfaces. To resolve these issues, you need to
simplify the choices for how to utilize vendor products (i.e., using profiles) and clearly
identify which aspects will be vendor independent. Reliance on standards is one step.
Definition of profiles shows that you have sophistication in the use of standards and
products.

Exercise 2.6

Which standards are being applied in your organization? Do they supply the desired
benefits? Are there any profiles for these standards in your organization? Why or why not?
Develop a plan, listing the recommended profiles of standards for your organization.
Explain the rationale for why your organization needs each profile specification.

IT-SC 92

Background for Solution:

Standards, while being one step away from vendor dependence, pose many of the same
challenges as integrating with vendor-specific APIs. By definition, standards are very
general purpose, applying to as many types of applications as possible. Therefore, the
management of complexity is not an important goal for the standards writer. In fact,
many standards are overly complicated in order to create barriers for vendor competition.
Sophisticated application architects know this, and they plan to manage this complexity,
e.g., profiles. We apologize for being so singled-minded about profiles, but this is a key
solution concept that most organizations miss—with resulting negative consequences. In
one of our favorite quotes, a senior executive laments that "We have created a set of fully
standards-compliant stovepipes which can't interoperate." It's dead obvious why that's
happened. You didn't read our book. Not that we created the concept, which is nearly as
old as IT standards themselves.

Exercise 2.7

Describe the quality-of-service requirements for the distributed infrastructures in your
organization (or customer). What qualities of service are readily supported today? What
qualities of service could be usefully added? What distributed technologies would be
applicable to meet these needs?

Background for Solution:

A quality of service (QoS) is an important category of architectural requirements for
distributed infrastructure. Do you need reliable communications, e.g., funds transfer? Do
you need to support continuous media, e.g., desktop video teleconferencing? How
reliable? How continuous? How secure? These are important questions that drive the
selection of infrastructures, the migration plans of enterprises, and the practices of
enterprise architects.

IT-SC 93

Chapter three Software Architecture:
Going to War

To be a software architect means that you must learn to think like an architect—in
particular, a distributed systems architect. This is a substantial paradigm shift from
thinking like an individual software developer writing one program. In this world of
increasingly distributed IT systems, much of what you learned in your previous training
can naively mislead you.

In order to go to war, you need to commit to a new mindset and a ruthless pursuit of
architectural knowledge. Ignorance is our enemy, and knowledge is power on the
architectural battlefield. We must erase mistaken assumptions and help you think about
systems with much greater clarity, so that you can reason about the complex issues
involved.

3.1 Software Architecture Paradigm Shift

Unless you program telecommunications systems, video games, mainframe operating
systems, or rigorously inspected software (e.g., CMM Level 5), almost every piece of
software you will ever encounter is riddled with defects and, at least in theory, doesn't
really work. It only appears to work—until an unexpected combination of inputs
sends it crashing down. That is a very hard truth to accept, but experienced architects
know it to be the case. In commercial software, nothing is real. If you don't believe this,
invite a noncomputer user to experiment with your system. It won't take long for them to
lock up one or more applications and possibly invoke the Blue Screen of Death.

In order to cope with this uncertain terrain, you need to begin thinking about software as
inherently unreliable, defect ridden, and likely to fail unexpectedly. In addition, you need
to confront numerous issues regarding distributed computing that aren't taught in most
schools or training courses.

We have many things to learn and unlearn as we go to war. We begin by recognizing a
key paradigm shift that leads to a deeper understanding of distributed computing and its
pervasive consequences.

Traditional System Assumptions

The essence of the paradigm shift revolves around system assumptions. Traditional
system assumptions are geared toward nondistributed systems—for example,
departmental data processing systems. Under these assumptions, we assume that the
system comprises a centrally managed application where the majority of processing is
local, the communications are predictable, and the global states are readily observable.
We further assume that the hardware/software suite is stable and homogeneous and fails
infrequently and absolutely: Either the system is up or the system is down. Traditional

IT-SC 94

system assumptions are the basis for the vast majority of software methodology and
software engineering.

Traditional system assumptions are adequate for a world of isolated von Neumann
machines (i.e., sequential processors) and dedicated terminals. The traditional
assumptions are analogous to Newton's laws of physics in that they are reasonable
models of objects that are changing slowly with respect to the speed of light.

Distribution Reverses Assumptions

However, the von Neumann and Newtonian models are no longer adequate descriptions
of today's systems. Systems are becoming much less isolated and increasingly connected
through intranets, extranets, and the Internet. Electro- magnetic waves move very close to
the speed of light in digital communications. With global digital communications, the
Internet, and distributed objects, today's systems are operating more in accord with
Einstein's relativity model. In large distributed systems, there is no single global state or
single notion of time; everything is relative. System state is distributed and accessed
indirectly through messages (an object-oriented concept). In addition, services and state
may be replicated in multiple locations for availability and efficiency. Chaos theory is
also relevant to distributed object systems. In any large, distributed system, partial
failures are occurring all the time: network packets are corrupted, servers generate
exceptions, processes fail, and operating systems crash. The overall application system
must be fault-tolerant to accommodate these commonplace partial failures.

Multiorganizational Systems

Systems integration projects that span multiple departments and organizations are
becoming more frequent. Whether created through business mergers, business process
reengineering, or business alliances, multiorganizational systems introduce significant
architectural challenges, including hardware/software heterogeneity, autonomy, security,
and mobility. For example, a set of individually developed systems have their own
autonomous control models; integration must address how these models interoperate and
cooperate, possibly without changes to the assumptions in either model.

Making the Paradigm Shift

Distributed computing is a complex programming challenge that requires architectural
planning in order to be successful. If you attempt to build today's distributed systems with
traditional systems assumptions, you are likely to spend much of your budget battling the
complex, distributed aspects of the system.

The difficulty of implementing distributed systems usually leads to fairly brittle solutions,
which do not adapt well to changing business needs and technology evolution.

The important ideas listed below can help organizations transition through this paradigm
shift and avoid the consequences of traditional system assumptions:

IT-SC 95

1. Proactive Thinking Leads to Architecture. The challenges of
distributed computing are fundamental, and an active, forward-thinking approach
is required to anticipate causes and manage outcomes. The core of a proactive IT
approach involves architecture. Architecture is technology planning which
provides proactive management of technology problems. The standards basis for
distributed object architecture is the Reference Model for Open Distributed
Processing (RM-ODP).

2. Design and Software Reuse. Another key aspect of the paradigm
shift is avoidance of the classic antipattern: "Reinventing the Wheel." In software
practice there is continual reinvention of basic solutions and fundamental software
capabilities. Discovery of new distributed computing solutions is a difficult
research problem which is beyond the scope of most real-world software projects.
Design patterns is a mechanism for capturing recurring solutions. Many
useful distributed computing solutions have already been documented using
patterns. While patterns address design reuse, object-oriented frameworks are
a key mechanism for software reuse. To develop distributed systems
successfully, effective use of design patterns and frameworks can be crucial.

Tools. The management of complex systems architecture requires the support of
sophisticated modeling tools. The Unified Modeling Language makes these tools
infinitely more useful because we can expect the majority of readers to understand the
object diagrams (for the first time in history). Tools are essential to provide both forward
and reverse engineering support for complex systems. Future tools will provide
increasing support for architecture modeling, design pattern reuse, and software reuse
through OO frameworks.

The software architecture paradigm shift is driven by powerful forces, including the
physics of relativity and chaos theory, as well as changing business requirements and
relentless technology evolution. Making the shift requires proactive architecture planning,
pattern/framework reuse, and proper tools for defining and managing architecture. The
potential benefits include: development project success, multiorganizational
interoperability, adaptability to new business needs, and exploitation of new technologies.
The consequences of not making the paradigm shift are well documented; for example, 5
out of 6 corporate software projects are unsuccessful. Using architecture to leverage the
reversed assumptions of distributed processing can lead to a reversal of misfortunes in
software development.

3.2 Doing Software Wrong

After many years of brutal lessons learned, enterprise software development is moving
out of the heroic programming dark ages and into an industrial-strength architecture
revolution. The key is architecture-centered development, and most software experts
agree that for complex systems nothing else works.

In this chapter we will explain the architecture-centered development process in some
detail. But first, let's see why this software revolution is an inevitable necessity in
enterprise development organizations.

IT-SC 96

This Old Software

To be successful, software must create an on-screen illusion that appears to meet end-user
needs. But this illusion is temporary. In enterprise development, the internal structure of
the software is also of great importance. In particular, the software architecture's ability to
accommodate change will determine whether it provides ongoing value to the enterprise.

There are at least two unstoppable forces of change in enterprise software development:
(1) requirements change and (2) technology change. In effect, our complex world is
changing during system development and operational deployment.

Requirements change because the business environment changes, and because the end
users' understanding of the requirements changes upon encountering realized system
elements.

Technology changes are driven by relentless competition under the guise of innovation in
the commercial software market. Vendor strategies are accelerating and enforcing change
for software consumers. Currently, major vendors obsolete their own products every 6 to
18 months.

Because virtually every enterprise system relies on multiple commercial software
suppliers, managing technology change is complex. Identifying, developing, and
maintaining suites of integrated commercial products is an ongoing problem that every
enterprise software organization must resolve for itself.

An Example: Doing Software Wrong

Here is a typical development scenario that is occurring in many enterprise software
organizations today.

The enterprise needs a new software system. The target system is a replacement or
consolidation of existing systems which do not support necessary changes to business
processes. A project manager is appointed and a development team formed. The
development team is a mixed group with some current and legacy skills (often with the
balance toward legacy).

The project manager studies potential approaches and concludes that "object-oriented"
(or other current buzzword) is the only paradigm that makes sense, given readily
available, commercial technologies. In other words, the manager is led to believe that
buzzword technology will make system success easy. Vendors encourage this illusion by
claiming that their products can remake ordinary developers into programming stars. So
the manager makes technology commitments and puts the development team through a
product-specific programming course.

After that, nothing seems to happen. The team struggles to analyze, design, and program
the system, without much measurable progress. The manager grows increasingly

IT-SC 97

frustrated and worried, as the project schedule slips into political trouble with upper
management and end users.

Statistically, the manager was doomed, almost from the start. According to reliable
surveys, the brutal reality is that one-third of all corporate development projects are
cancelled. Five out of six projects are considered unsuccessful and unable to deliver
desired features. Even average projects have schedule and budget overruns nearly double
the original project estimates.

Enter the Knight: Heroic Programmers

Heroic programmers can help a project to avoid short-term consequences, by delivering
software that appears to meet end-user needs. Now that user interfaces are relatively easy
to implement, the illusion of working software is increasingly easy to demonstrate.
However, the complexities of developing a system that accommodates change is another
matter. Heroic programmers are usually too close to the software problem to consider
these longer-term consequences (Figure 3.1).

Figure 3.1. Heroic Programmers Often Fail to See the Bigger Dragon

With today's complex programming notations (e.g., C++) and distributed system
capabilities (e.g., intranet, N-tier), it is widely understood that software modules are
unmaintainable, except by the original programmer. Averaging at 30% annually in the
United States, developer turnover can quickly obsolesce an undocumented, heroically
programmed system into an unmanageable stovepipe system.

We believe that good programmers are absolutely necessary, but not sufficient, to ensure
system success. Even in the most qualified of hands, the available program design
methods, software tools, and computing technologies are surprisingly inadequate,

IT-SC 98

compared to today's enterprise system challenges. Managing change and complexity
requires much more than raw programming talent in order to realize a successful and
maintainable system. Solutions to today's enterprise development challenges are possible
through architecture-centered development—in other words, through working smarter,
not harder, by doing software right.

3.3 Doing Software Right: Enterprise Architecture
Development

Solving complex problems with teams of people requires planning. For enterprise
software systems, some of the most important planning is highly technical (i.e., planning
system architecture).

Planning generates artifacts, but planning (as an activity) is much more important than
project management plans, the typical artifacts. By this, we mean that document-driven
process is not recommended because its priorities focus on paper artifacts, whereas the
real product of any software development project is software. Instead, we view planning
in a broader context, with multiple levels of formality and technical detail. For example,
architecting is planning, and so are requirements analysis, design modeling, and
generating plans. The level of formality should be tied to the longer-term usefulness of
the documentation.

In architecture-centered development, planning is pragmatic (Figure 3.2). Project plans
and design models are throwaway documentation because their accuracy is short lived.
Once a plan or specification is out of date, it is essentially useless. For example, source-
code changes can quickly obsolesce design models.

Figure 3.2. Without Planning, It Becomes Apparent That Many Individual
Successes Are Not Sufficient for Overall Project Success

IT-SC 99

In addition software methods and standards should be treated as guidelines, not mandates.
Project teams are encouraged to think for themselves and tailor the process to meet the
project's needs.

Pragmatics is a fundamental principle of software modeling: for requirements,
architecture, and design. Every model has a purpose and focus, suppressing unimportant
details. Models should document important decisions, based upon project assumptions
and priorities. Deciding what's important is an essential decision skill that is part of being
a competent architect.

Architecture-Centered Process

Figure 3.3 shows the 10-step process for architecture-centered development that covers
the full system life cycle. This process is based upon key software standards and best-
practice patterns proven in practice.

Figure 3.3. Architecture-Centered Development Process

IT-SC 100

A key objective is to facilitate productivity in Step 7 for parallel iterative development
(i.e., coding and testing). In this discussion, the activities preceding Step 7 are
emphasized, because these steps comprise the architecture planning activities where we
believe the key issues reside in current enterprise development.

We emphasize that this process is inherently iterative and incremental perhaps requiring
revisions to artifacts from previous steps. However, the predevelopment steps do have a
waterfall progression, due to their interdependencies. The entire process is quality driven,
with the ultimate goal of satisfying end-user needs by establishing a stable architecture
description and a working software codebase that can accommodate change.

Step 1: System Envisioning

In discussing modeling, we mentioned the key words purpose, focus, assumptions,
and priorities. These are all essential elements of a systemwide Vision Statement.
If they change during system development, the project is at risk of obsolescing its own
models. Therefore, the first step of architecture-centered development is to establish a
Vision Statement, with the binding assumption that the Vision Statement cannot change,
once development begins (Step 7). Any changes must be reflected in key project plans—
in particular, the System Architecture (Step 3).

In effect, the Vision Statement is a binding agreement between the system developers and
the system users. It should be short and to the point, typically less than 10 pages of text,
depending on the system.

The Vision Statement establishes the context for all subsequent project activities, starting
with requirements analysis.

Step 2: Requirements Analysis

IT-SC 101

The requirements should define the external behavior and appearance of the system,
without designing the internal structure of the system. The external behavior includes
internal actions (such as persistence or calculation) that are required to ensure desired
external behavior. The external appearance comprises the layout and navigation of the
user interface screens.

An effective approach for capturing behavioral requirements is through use cases. A use
case comprises a top-level diagram and extensive textual description. A typical use case
diagram is shown in Figure 3.2, for an information retrieval architecture. Use case
notation is deceptively simple, but it has one invaluable quality: it enforces abstraction.
Use case notation is one of the most effective notations ever devised for expressing
complex concepts. Hence, it's great for ensuring simplicity and clarity in representing
top-level requirements concepts.

For each circle in the diagram (called an individual use case), there is an extensive textual
description of the relevant requirements. This write-up takes the form of a long list,
containing a sequence of actions, described in domain-specific prose. The definition of
use cases should be done jointly with domain experts. Without continuous involvement
of domain experts, the exercise is a common antipattern called Pseudo Analysis, i.e.,
something to be avoided.

Use cases provide a domain model of the system for the purpose of defining architecture.
Use cases also have a downstream role. In development, Step 7, use cases are extended
with system-specific scenario diagrams. Eventually, these scenarios are elaborated into
software tests.

The appearance, functionality, and navigation of the user interface is closely related to
the use cases. An effective approach to defining the screens is called low-fidelity
prototyping. In this approach, the screens are drawn out with paper and pencil. Again, the
end-user domain experts are continuously involved in the screen definition process.

With the use cases and user interfaces defined, we have established context for
architectural planning. In addition to generating documentation (including paper and
pencil sketches), the architecture team acquires a deep understanding of the desired
system capabilities in the context of the end-user domain.

A final product of requirements analysis is a project glossary which should be extended
during architecture planning (Step 3).

Step 3: Architecture Planning

Architecture bridges the huge semantic gap between requirements and software. Because
requirements notation is prose, requirements are inherently ambiguous, intuitive, and
informal. It's right-brain stuff. Software, on the other hand, has the opposite
characteristics. Software source code is a formal notation. Software is interpreted
unambiguously by a machine, and its meaning is logically unintuitive (i.e., hard to
decipher). It's left-brain stuff.

IT-SC 102

Architecture's first role is to define mapping between these two extremes. Architecture
captures the intuitive decisions in a more formal manner (which is useful to
programmers), and it defines internal system structure before it is hardwired into code (so
that current and future requirements can be satisfied). Architecture is a plan that manages
system complexity in a way that enables system construction and accommodates change.
Architecture has another significant role: defining the organization of the software project.
(See Step 6.)

Architecture planning is the key missing step in many current software projects,
processes, and methods. One cause of this gap is the ongoing debate about the question:
"What is architecture?" Fortunately, this question has already been answered definitively,
by the software architecture profession, in a formal ISO standard for Open Distributed
Processing (ODP).

ODP is a powerful way to think about complex systems which simplifies decision
making (i.e., working smarter, not harder). It organizes the system architecture in terms
of five standard viewpoints, describing important aspects of the same system. These
viewpoints include business enterprise, logical information, computational interface,
distributed engineering, and technology selection (Figure 3.4).

Figure 3.4. ODP Viewpoints

For each viewpoint it is important to identify conformance to architectural requirements.
If conformance has no objective definition, then the architecture is meaningless, because
it will have no clear impact upon implementation. ODP facilitates this process because
ODP embodies a pervasive conformance approach. Simple conformance checklists are all
that's needed to identify conformance points in the architecture.

IT-SC 103

In the following paragraphs we shall summarize each of these viewpoints. Using ODP, a
typical architecture specification is concise, comprising about 100 pages, depending upon
the system. Each viewpoint comprises 5 to 20 pages. It is expected that every developer
will read this document, cover to cover, and know its contents. We suggest that the
content be tutorialized (i.e., viewgraphs) and communicated to developers, in detail,
through a multiday kickoff meeting. (See Step 7.)

Business Enterprise Architecture

The Business Enterprise Architecture (the enterprise viewpoint) defines the business
purpose and policies of the system in terms of high-level enterprise objects. These
business object models identify the key constraints on the system, including the system
objective and important system policies.

Policies are articulated in terms of three categories: (1) obligations—what business
objects must do, (2) permissions—what business objects can do, and (3) prohibitions—
what business objects must not do.

A typical Business Enterprise Architecture comprises a set of logical object diagrams (in
UML notation) and prose descriptions of the diagram semantics.

Logical Information Architecture

The Logical Information Architecture (the information viewpoint) identifies what the
system must know. This architecture is expressed in terms of an object model with an
emphasis on attributes which define system state. Because ODP is an object-oriented
approach, the models also include key information processes, encapsulated with the
attributes, i.e., the conventional notion of an object.

A key distinction is that architectural objects are not programming objects. For example,
the information objects do not denote objects that must be programmed. On the other
hand, the architecture does not exclude this practice.

Architecture objects represent positive and negative constraints on the system. Positive
constraints identify things that the system's software must do. Negative constraints are
things that the system's software does not have to do. Knowledge of these constraints is
extremely useful to programmers, because they eliminate much of the guesswork in
translating requirements to software. The architects should focus their modeling on those
key system aspects of greatest risk, complexity, and ambiguity, leaving straightforward
details to the development step.

The information model does not constitute an engineered design. In particular,
engineering analysis, such as database normalization, is explicitly delegated to the
development activities (Step 7).

Computational Interface Architecture

IT-SC 104

Often neglected by architects, the computational interface architecture (the computational
viewpoint) defines the top-level application program interfaces (API). These are fully
engineered interfaces for subsystem boundaries. In implementation, the developers will
program their modules to these boundaries, thus eliminating major design debates
involving multiple developers and teams. The architectural control of these interfaces is
essen tial to ensuring a stable system structure that supports change and manages
complexity.

An ISO standard notation ODP computational architecture is the CORBA Interface
Definition Language (IDL). IDL is a fundamental notation for software architects
because it is completely independent of programming-language and operating-system
dependencies. IDL can be automatically translated to most popular programming
languages for both CORBA and Microsoft technology bases (i.e., COM/DCOM) through
commercially available compilers.

Related techniques for defining computational architectures include architecture mining
and domain analysis.

Distributed Engineering Architecture

Distributed engineering architecture (the engineering viewpoint) defines the requirements
on infrastructure, independent of the selected technologies (Figure 3.5). The
engineering viewpoint resolves some of the most complex system decisions, including
physical allocation, system scalability, and communication qualities of service (QoS).

Figure 3.5. ODP Engineering Viewpoint

IT-SC 105

One of the key benefits of ODP is its separation of concerns (i.e., design forces).
Fortunately, the previous viewpoints resolved many other complex issues that are of
lesser concern to distributed systems architects, such as APIs, system policies, and
information schemas. Conversely, these other viewpoints were able to resolve their
respective design forces, independent of distribution concerns.

Many software and hardware engineers find this part of architecture modeling to be the
most interesting and enjoyable. Fascinating decisions must be made regarding system
aspects such as object replication, multithreading, and system topology.

Technology Selection Architecture

The technology selection architecture (the technology viewpoint) identifies the actual
technology selection. All other viewpoints are fully independent of these decisions.
Because the majority of the architecture design is independent, commercial technology
evolution can be readily accommodated.

A systematic selection process includes initial identification of conceptual mechanisms
(such as persistence or communication). The specific attributes (requirements) of the
conceptual mechanism are gathered from the other viewpoints. Concrete mechanisms are
identified (such as DBMS, OODBMS, and flat files). Then specific candidate
mechanisms are selected from available technologies (such as Sybase, Oracle, and Object
Design databases). Based upon initial selections from candidates, this process is iterated
with respect to project factors such as product price, training needs, and maintenance
risks.

It is important to retain the rationale behind these selections, as it is important to record
the rationale for all viewpoints as future justification of architectural constraints. This
recording can be done in an informal project notebook maintained by the architecture
team for future reference.

Step 4: Mockup

The screen definitions from Step 2 are used to create an on-line mockup of the system.
Dummy data and simple file IO can be used to provide more realistic interface simulation
in key parts of the user interface. The mockup is demonstrated to end users and
management sponsors.

End users and architects should jointly review the mockups and run through the use cases
(Step 2) in order to validate requirements. Often, new or modified requirements will
emerge during this interchange. Generate screen dumps of any modified screens and
mark them up for subsequent development activities. Any modifications to requirements
are then incorporated by the other architectural activities.

Through the mockup, management is able to see visible progress, a politically important
achievement for most projects. This step is an example of an external (or vertical)
increment, which is used for risk reduction, both political and requirementswise.

IT-SC 106

With rapid prototyping technologies such as screen generation wizards, mockups can be
generated in less than a staff month for most systems.

Step 5: Architecture Prototyping

The architecture prototype is a simulation of the system architecture. System API
definitions are compiled and stub programs written to simulate the executing system. The
architecture prototype is used to validate the computational and engineering architectures,
including flow of control and timing across distribution boundaries.

Using technologies like CORBA, a computational architecture specification can be
automatically compiled into a set of programming header files with distributed stubs
(calling side) and skeletons (service side). Dummy code is inserted in the skeletons to
simulate processing. Simple client programs are written to send invocations across
computational boundaries with dummy data. A handful of key (e.g., high-risk) use cases
are simulated with alternative client programs. Prototype execution is timed to validate
conformance with engineering constraints.

Changes to the computational, engineering, or technology architectures are proposed and
evaluated.

Step 6: Project Management Planning

As the final step in the predevelopment process, project management plans are defined
and validated to resolve resource issues, including staffing, facilities, equipment, and
commercial technology procurement. A schedule and a budget are established, according
to the availability (lead time) for resources and project activities.

The schedule for Step 7 is planned in terms of parallel activities for external and internal
increments. External increments support risk reduction with respect to requirements and
management support (see Step 4). Internal increments support the efficient use of
development resources—for example, the development of back-end services used by
multiple subsystems.

Current best practices are to perform several smaller internal increments supporting
larger-scale external increments, called VW staging. Ideally, several project teams of up
to 4 programmers are formed, with 3-month deliverable external increments. In practice,
this has proven to be the most effective team size and increment duration.

The architecturecentric process enables the parallel increments. Because the system is
partitioned with well-defined computational boundaries, development teams can work
independently, in parallel with other teams, within their assigned boundaries. Integration
planning includes increments which span architectural boundaries.

The detail in the project plan should not be inconsistent. The plan should be very detailed
for early increments and should include replanning activities for later in the project. This
recognizes the reality that project planners don't know everything up front.

IT-SC 107

A risk mitigation plan is also prepared with identification of technical backups. The
development team involved in mockup and architecture prototyping should continue to
develop experimental prototypes with high-risk technologies in advance of the majority
of developers. This is called the "run-ahead team" and is a key element of risk mitigation.

The final activity in project management planning is the architectural review and startup
decision. Up to this point, the enterprise sponsors have made relatively few commitments,
compared to the full-scale development (about 5% of system cost, depending on the
project).

Executive sponsors of the project must make a business decision about whether to
proceed with building the system. This executive commitment will quickly lead to many
other commitments which are nearly impossible to reverse (such as technology lock-in,
expenses, and vendor-generated publicity). At this point, the system architects are
offering the best possible solution and approach, in the current business and technology
context.

If the system concept still makes business sense, compared to the opportunity costs, the
enterprise is in an excellent position to realize the system because they're doing software
right.

Step 7: Parallel Incremental Development

Development project kickoff involves several key activities. The developers must learn
and internalize the architecture and requirements. An effective way to achieve this is with
a multiday kickoff meeting, which includes detailed tutorials from domain experts and
architects. The results of all previous steps are leveraged to bring the developers up to
speed quickly and thoroughly. We suggest that the lectures be videotaped, so that staff
turnover replacements can be similarly trained.

Each increment involves a complete development process, including design, coding, and
test. Initially, the majority of the increments will be focused on individual subsystems. As
the project progresses, an increasing number of increments will involve multiple
subsystem integration. A project rhythm is established that enables coordination of
development builds and tests.

For most of the software development activity, the architecture is frozen, except at some
planned points, where architectural upgrades can be inserted without disruption.
Architectural stability enables parallel development.

For example, at the conclusion of a major external increment, an upgrade to the
computational architecture can be inserted, before the next increment initiates. The
increment starts with an upgrade of the software, conformant with the changes. In
practice, the need and frequency of these upgrades decreases as the project progresses.
The architect's goal is to increase the stability and quality of the solution, based upon
feedback from development experience. A typical project would require two architectural
refactorings (upgrades) before a suitably stable configuration is achieved for deployment.

IT-SC 108

Step 8: System Transition

Deployment of the system to a pilot group of end users should be an integral part of the
development process. Based upon lessons learned in initial deployment, development
iterations might be added to the plan. Schedule slips are inevitable, but serious quality
defects are intolerable for obvious reasons. Improving quality by refactoring software
(improving software structure) is an important investment in the system that should not
be neglected.

An important architect's role in this step involves system acceptance. The architect should
confirm that the system implementation is conformant with the specifications and fairly
implements the end users' requirements. This task is called architectural certification.

In effect, the architect should be an impartial arbitrator between the interests of the end
users and those of the developers of the system. If the end users define new requirements
which impact architectural assumptions, the architect assesses the request and works with
both sides to plan feasible solutions.

Step 9: Operations and Maintenance

Operations and Maintenance (O&M) is the real proving ground for architecture-centered
development. Whether or not "doing software right" was effective will be proven in this
step. The majority of system cost will be expended here. As much as 70% of the O&M
cost will be due to system extensions—requirements and technology changes that are the
key source of continuing development.

Typically, half of a programmer's time will be expended trying to figure out how the
system works. Architecture-centered development resolves much of this confusion with a
clear, concise set of documentation: the system architecture.

Step 10: System Migration

System migration to a follow-on target architecture occurs near the end of the system life
cycle. Two major processes for system migration are called big bang and chicken little. A
big bang is a complete, overnight replacement of the legacy. In practice, the big bang
seldom succeeds; it is a common antipattern for system migration.

The chicken little approach is more effective and ultimately more successful. Chicken
little involves simultaneous, deployed operation of both target and legacy systems. The
initial target system users are the pilot group (as in Step 8).

Gateways are integrated between the legacy and target systems. Forward gateways allow
legacy users to have access to data that is migrated to the target system. Reverse
gateways allow target system users to have transparent access to legacy data. Data and
functionality are migrated incrementally from the legacy to the target system. In effect,
system migration is a continuous evolution. As time progresses, new users are added to
the target system and taken off the legacy environment.

IT-SC 109

In the long term, it will become feasible to switch off the legacy system. By that time, it
is likely that the target system will become the legacy in a new system migration. The
target system transition, Step 8, overlaps the legacy system migration, Step 10. In the
chicken little approach, Steps 8, 9, and 10 are part of a continuous process of migration.

3.4 Bottom Line: Time, People, and Money

As a general rule, enterprise software projects requiring more than a year for delivery
should be avoided. In a one-year development, at least 3 to 6 months should be allocated
to the architecture phases (Steps 1 through 6).

The architecture phases require only a minimal staff. The architecture team includes a
project manager and a set of one to four architects depending on project complexity. A
part-time Run-Ahead Team augments the architecture staff, for implementation exercises,
including the Mockup and Architecture Prototype (Steps 4 and 5). A part-time Domain
Team assists in drafting the requirements and user interface design. The Domain Team
also validates the architecture and the mockup from the end-user perspective.

The development phase is scalable to fit the project complexity and delivery schedule,
through small functional teams of developers (ideally teams of 4 developers on 3-month
increments).

The schedule breaks down as follows: approximately 50% for system planning and 50%
for development. The development efforts would be split about 25% for actual coding
and 25% for testing and training. These allocations are conformant with best practices for
project management, which work in multiple domains, including software projects.

Cost estimates include an empirically verified 70% to 30% partition between
development and O&M. In addition, we estimate that a typical project requires less than
5% of the system budget for the architecture phases.

3.5 Conclusions

Architecture-centered development is doing enterprise software right. The process
detailed in this chapter is called the ODP+4 process; it is based upon widely utilized
architecture standards and best-practice patterns. It is called ODP+4 because it generates
an Open Distributed Processing architecture as well as other formal and informal artifacts,
including: (1) the Vision Statement, (2) the use-case-based requirements, (3) the rationale,
and (4) the conformance statements.

Architecture-centered development is pragmatic. Modeling focus is given to those
decisions that are architecturally important. Not every artifact is required. Document
formality is selective.

From experience, we have seen so many projects doing software wrong, that it's no
wonder five out of six projects are unsuccessful. The age of the heroic programmer is
coming to an end, and the age of the professional software architect has begun. Driven by

IT-SC 110

escalating user expectations, business changes, and technology innovations, many
organizations now realize that proper system planning generally translates into system
success, and improper planning leads to system failure.

Finally, the role of the software architect is relatively new in many project cultures. What
has been called architecture, informally, needs to become conformant with standards and
best-practice patterns, if consistent development success is desired.

3.6 Exercises

Exercise 3.1

Which mistaken traditional systems assumptions are commonly applied by your
organization in software development? How would you remedy this situation?

Background for Solution:

Much of what people learn in school (e.g., computer science courses) can be viewed as
negative training with respect to this paradigm shift. Not everyone in the organization
needs to embrace the paradigm shift completely. At a minimum, the architects of the
system do have to have a solid understanding of these concepts and need to define system
boundaries that mitigate the consequences of the actions of wrong-thinkers.

Exercise 3.2

Are there obvious AntiPatterns which your organization continually repeats in
development after development? What alternatives would you recommend to avoid these
recurring mistakes and/or refactor the results of existing solutions?

Background for Solution:

Please refer to our book AntiPatterns for a full disclosure on this sensitive topic
[Brown 98]. In our experience, AntiPatterns are more prevalent than patterns of success.
One of our good friends mused that if people would simply avoid the most obvious
mistakes, software development would be much more successful, as an industry. In other
words, our friend thinks that you may not need a new set of good practices, as long as
you avoid the practices that are known not to work.

Exercise 3.3

How does the process of Enterprise Architecture Development compare with your current
organizational practices for building large systems? Do you have an explicit architectural
phase before hordes of programmers join the effort? Do you use Lo-Fi screen design and
architectural prototyping to reduce risks? Do you have a run-ahead team? Is your
architecture prework defining effectively organizational interfaces that enable parallel
development?

IT-SC 111

Background for Solution:

Sophisticated architecture practices are rare indeed, in today's software industry. The one-
man heroic programming team is still a commonplace fixture in many shops. Not
surprisingly, some of the best-known products in today's software market are the result of
one-man development teams. It works for some commercial organizations that can
tolerate the release of extremely deficient products. Not so, in most application
development shops. We know that it is brutally difficult to attempt to think and work
architecturally, when every manager is under extreme time pressure to deliver results.
First they have to understand that there is a problem. Lending them a copy of our book
AntiPatterns is one way to move forward. We wrote it specifically for people who
have difficulty admitting that there is a problem, when it's incredibly obvious to most
other people.

Exercise 3.4

What is your organizational process for architecting and developing a system? Are there
conventions for how much time is devoted to system planning (e.g., architecture) versus
programming and other tasks? If you had a magic wand, how would you refactor your
organizational practices to improve system successes and reduce unnecessary
commitments and risks?

Background for Solution:

On a typical project (in many shops), a large group of developers (perhaps 30 or 50) join
the project on day one. These people are rapidly allocated into a human organization
before there is an architecture available to guide these decisions. Once in place, these
organizations are almost impossible to change. Then there is a long period of negotiations
as these groups struggle to define the system architecture to be conformant with their
organizational boundaries. The architect has lost control. Ideally, what should happen
resembles the Enterprise Architecture Development process that we describe in this
chapter. Commitments for developers and equipment are delayed until adequate planning
has occurred. Irreversible decisions are not made until the organization fully understands
what it wants to accomplish.

IT-SC 112

Chapter four Software Architecture: Drill
School

In order to provide technical leadership, an architect must have mastered several
fundamental areas of software design and aspects of the overall software development
process.

Most software architects would agree that software design involves multiple levels of
abstraction. The notion of design levels originates from the hardware design levels
proposed by Bell and Newell in 1971. Design levels help to simplify hardware design
because they provide a separation of concerns. In design patterns terminology, design
levels provide a separation of "forces."

By limiting the sets of forces that need to be resolved in each design decision, we
simplify design problems. This simplification is possible because not all design forces are
equally important at all levels. Design levels are defined in terms of a reference model.
The reference model partitions and allocates the major design forces so that each force is
resolved at an appropriate level.

The separation of design levels is an important, but missing, element in most object
technology practice. Design levels are particularly important for the creation and
understanding of object-oriented architecture.

4.1 Architecture versus Programming

Software design levels has been a topic of academic discussion. Representing the
software architecture research community, Shaw and Garlan propose a three-level model,
comprising:

machine

code

architecture

The machine level comprises unmodifiable binary software, including the operating
system and linkable modules. The code level is modifiable source code. The architecture
level is a higher level of abstraction. In their model, architecture comprises software
partitioning, software interfaces, and interconnections.

The three-level model establishes a useful frontier for academic research on software
architecture. However, it does not have enough levels to provide a sufficient separation of
design forces. In addition, this model cannot explain key object-technology benefits, such
as interoperability and reuse. Interoperability and reuse require at least one more level in
the model: The Enterprise, an architecture of system architectures.

The Fractal Model of Software

IT-SC 113

Another way to view software levels is in terms of scale (Figure 1.9). Objects and
classes are the finest grain level. This is the level defined by programming languages
(C++, Java) and infrastructures (e.g., CORBA, J2EE). The next level comprises
microarchitectures, which are simple configurations of objects. This is the level
addressed by most design patterns. Configurations of microarchitectures form
frameworks (in the Taligent sense). Groups of frameworks form applications (or
subsystems). Groups of applications form systems.

The idea for the fractal model was proposed by Richard Helm, co-author of Design
Patterns: Elements of Reusable Object-Oriented Software [Gamma 94]. A missing
element from the fractal model is the separation of concerns (or forces).

Major Design Forces

There is surprising agreement about the major design forces on the part of various
communities of software researchers. Much of the work is driven by a single major force
at a particular design level, although the particular force and design level vary by group.

Many identify adaptability as the key design force. Adaptability is alternately called
"management of change" or variation-centered design. Others focus on management of
complexity. Management of complexity is the major driving force of the academic
software architecture community, as well as much of the software metrics community.

The Effect of Scale on Forces

Management of change is one of the major design forces in object-oriented architecture.
Its importance varies greatly with the scale of software and design level. As the scale of
software increases, so does the frequency of change.

For example, an individual application may need to be upgraded only occasionally. A
system may comprise many applications, each requiring upgrade. The effect of change is
cumulative. At an enterprise level, change is very frequent, with new applications,
systems, peripherals, and employees moving every day.

There is a similar effect of scale on other major design forces. This realization leads to a
separation of forces between design levels.

Software Design Levels

The Software Design-Level Model (SDLM) builds upon the fractal model (Figure 1.9).
This model has two major categories of scales, Micro-Design and Macro-Design. The
Micro-Design levels include the finer-grain design issues from application (subsystem)
level down to the design of objects and classes. The Macro-Design levels include system-
level architecture, enterprise architecture, and global systems (denoting multiple
enterprises and the Internet).

IT-SC 114

The Micro-Design levels are the most familiar to developers. At Micro-Design levels, the
key concerns are the provision of functionality and the optimization of performance. At
the Macro-Design levels, the chief concerns lean more toward management of
complexity and change. These design forces are present at finer grains, but are not nearly
of the same importance as they are at the Macro-Design levels.

An interesting boundary in the SDLM model is between the enterprise and the global
levels. Forces that are important to resolve inside the enterprise are very different than the
forces that are important externally. Inside the enterprise, control of information
technology and resources is challenging, but feasible. At the global level, issues of
technology transfer, control of intellectual property (licensing), and security are key
issues between enterprises (and individuals).

Using Design Levels

Design levels are an important and useful intellectual tool. Design levels help to simplify
design problems by separating design forces. Each design level limits the number of
forces that need to be resolved by any given design decision. Design levels have been in
use for dozens of years in digital hardware engineering, and it is time for object
technology to adopt a similarly effective conceptual discipline.

Design levels are a key issue for object-oriented architecture because they define the
problems and forces that architecture must resolve.

4.2 Managing Complexity Using Architecture

One of the key skills of any software architect is the management of software complexity.
Software complexity is the one of the key characteristics of all nontrivial software
systems which must be managed. Successful management of complexity leads to
improvement in many system qualities such as understandability, maintainability, and
modifiability.

Complexity is an interesting phenomenon because it arises from the aggregation of many
small design decisions. For system-level interfaces, the effects of complexity are
multiplicative, because multiple parts of an integrated system are affected by each design
addition. For example, it may seem very reasonable to add a few attributes and operators
to a subsystem interface. If this uncoordinated practice is repeated on multiple
subsystems, the result will be excessive complexity and brittle interdependencies.
Another key factor is interpersonal: It is easier to reach consensus on design
disagreements by adding complexity, rather than by eliminating overlapping details. This
is the chronic failing of formal standards groups which produce "designs by committee."

Creating Complexity

IT-SC 115

Many key qualities of software systems are directly related to complexity, including cost,
maintainability, extensibility, and so forth.In practice, successful management of
complexity is rare. Poor management of complexity has several causes, including:

• Lack of Priority: Many software practitioners do not appreciate how
critically important management of complexity is to the success of any software
architecture and system implementation.

• Lack of Architectural Sophistication: Design patterns for
managing complexity are not commonplace in software education, training, and
practice.

Many software projects fail to manage complexity because they do not consider control
of complexity to be part of architecture. System-level design details are often delegated to
multiple developers, who readily produce unique, uncoordinated designs. Other projects
inherit excess complexity from the architecture of a proprietary product. Vendor
architectures emphasize flexibility to satisfy the widest possible consumer market. For
vendors, management of complexity has low priority, implicitly delegated to application
developers.

In order to successfully manage complexity, one needs to understand and apply a number
of architectural options. The following sections summarize some of the key techniques
for managing complexity in software architectures.

For present purposes only, I have labeled these options in terms of familiar analogies.
These architectural options are not exclusive. In each analogy, "It" refers to complexity:

Sweep It Under a Rug (Encapsulation)

Hide It in a Crowd (Repository Architecture)

Ignore It (Horizontal Architecture)

Slice It (Layered Architecture)

Dice It (Vertical Architecture)

"Do not slide through regions where high rates of information
exchange are required" [Rechtin 97].

Complexity comprises implementation details derived from the domain and the
technology. By managing complexity, we reorganize these details in a beneficial way. By
organizing complex details, we eliminate unnecessary dependencies and other factors that
compromise system quality.

Option 1: Sweep It Under a Rug

Encapsulation is an obvious way to hide implementation details behind an interface. As
one of the fundamental properties of object-oriented (OO) environments, encapsulation
unifies the software's data model and procedural model into object abstractions.

IT-SC 116

Encapsulation using language-specific mechanisms is not always as effective as we might
hope. When an implementation changes, there are unforeseen impacts on related objects,
which must also be modified.

Industrial-strength encapsulation, using CORBA Interface Definition Language (IDL), is
a way to increase the effectiveness of encapsulation. Users of X11R6 Fresco experienced
the enhanced encapsulation benefits of IDL even in a single-language, nondistributed
environment.

Option 2: Hide It in a Crowd

One of the most effective ways to manage complexity is to use a repository architecture.
In most cases, the repository is a database, but there are other forms, such as a blackboard.
Repository architecture is a design pattern that is highly applicable to system-level
architecture with documented benefits and consequences. It is interesting that many
software architects and developers fail to utilize this pattern when appropriate, exposing
large numbers of fine-grain object instances across system-level boundaries.

A repository architecture manages complexity by consolidating access to many objects
through query languages or accessor methods. One query-language statement can
consolidate messaging to thousands of objects. An object or relational repository schema
provides a common model and access protocol for management of large numbers of
objects.

Option 3: Ignore It

By ignoring nonessential differences between complex objects, we can define common
interface abstractions that provide many benefits, such as interoperability, adaptability,
substitutability, and isolation. The concept of "common interface" has many synonyms in
the software literature: design reuse, variation-centered design, standards, and so forth.
As one of the gang-of-four states: "The structure of most design patterns is similar". A
metapattern for this similar structure is the Common Interface.

Because the Java language supports interfaces as a language feature, some software gurus
are just discovering the benefits of common interfaces. Java interfaces allow flexible
substitution of multiple classes supporting a common interface protocol. Distributed
object practitioners have enjoyed the benefits of language-independent, common
interfaces for years.

Option 4: Slice It

A layered architecture defines levels of abstraction in a system, allowing application
software to be isolated from low-level details.

Layering defines sets of horizontal services with common interface abstractions. These
services are reused by multiple application objects and higher-level service objects.

IT-SC 117

Layering is a basic form of software reuse which provides interoperability and portability
benefits, in addition to managing complexity.

Layering is a flexible concept which takes many forms. Layering is frequently applied in
object wrapping, operating systems, networking, frameworks, standards profiling, and
application architectures.

Option 5: Dice It

Layering defines horizontal interfaces and partitions that manage complexity.
Definition of vertical partitions is also useful. Vertical partitions can isolate complexity
into independent subdomains. Each subdomain can support unique vertical frameworks.
Vertical dependencies can be limited to objects in the vertical partition. Cross-domain
dependencies (such as interoperability) should be handled through horizontal interfaces.

In practice, most systems contain many unique vertical interfaces. Good architecture has
a healthy balance between horizontal and vertical interfaces. Without horizontal
interfaces, vertical partitioning is ineffective. Horizontal interfaces enable vertical
partitions to interoperate without unnecessary dependencies.

"The first line of defense against complexity is simplicity of design"
[Rechtin 97].

4.3 Systems Integration

We extend our discussion of architectural issues related to client server systems
integration by covering a number of additional areas from which many important
questions arise. Handling tough questions about your architecture is one of the key skills
which we hope you will learn in our drill school. You may have detected an attitude of
skepticism in some of the previous remarks which we believe is appropriate for a mature
understanding of technology capabilities and how they apply to system development.
Object-oriented architects are responsible for developing the technology plans that
manage these underlying technologies in a way that supports the full system life cycle,
which may range up to 15 years for systems in the public sector.

The key concepts for technology management allow us to predict that technologies in
today's configurations will be evolving into new technologies which may obsolesce many
of today's current interfaces and infrastructure assumptions. One approach for mitigating
this inevitable commercial technology change is by defining application software
interfaces which the architect controls and maintains to isolate application technologies
from the majority of commercial infrastructure which are subject to rapid innovation. We
have covered these concepts and the details of how to implement them in significantly
more detail in some of the authors' writings; please refer to the bibliography.

"Use open architectures. You will need them once the market begins to
respond" [Rechtin 97].

IT-SC 118

Taking a somewhat cynical view of open systems technologies, one can conclude that the
developers of standards in both formal and consortium organizations represent the
interest of technology suppliers. There are significant differences in quality between the
kinds of specifications which are created and utilized for the general information
technology market, comprising the vast majority of object technology specifications and
the specifications used in particular mission-critical markets such as telecommunications.
For general information technology specifications, there are many cases where the
standards do not support testing. In fact, only about 5 or 6 percent of formal standards
have test suites which are readily available. The majority of testable standards are
compilers such as FORTRAN compilers, PASCAL compilers, and so forth. The CORBA
technology market has taken a direction to resolve this issue, at least in terms of the base
specifications for CORBA technologies. Significant additional work needs to occur to
enable general information technology standards to truly meet the needs of object-
oriented architects.

What about the Internet? The integration of Internet technologies is a capability that has
high priority in many organizations. The use of intranets and extranets is becoming a
mission-critical capability for large and medium size enterprises. There has been
substantial research and development in this domain. Figure 4.1 shows some of the
kinds of interfaces which have been created to support the integration of object
technologies to the Internet. Commercially supplied products which tie CORBA
technologies directly to the Internet, such as HTTP, are readily available. The
implementation of ORB technologies in an Internet-ready fashion has occurred—for
example, with the implementation of Java language based ORBs which are integrated
with browser environments. The use of object-oriented middleware is an important and
revolutionary step in the evolution of the Internet. Object oriented middleware represents
the ability to rapidly create new types of services and dynamically connect to new types
of servers. These capabilities go well beyond what is currently feasible with technologies
like http and the Java remote method invocation, which is a language-specific distributed
computing capability.

Figure 4.1. Integration of Multiple Technology Bases

IT-SC 119

Figure 4.2 addresses the question of integration of Microsoft technologies with other
object-oriented open systems capabilities. Based upon industry-adopted standards, it is
now possible to integrate shrink-wrapped applications into distributed object
environments supporting both CORBA and COM+. The definition of application
architectures can implement this capability in several ways. One approach is to adopt the
shrink-wrapped defined interfaces into the application software architecture. In this way
the application's subsystems become directly dependent upon proprietary control
interfaces, which may be obsolesced at the vendor's discretion. The alternative approach
is to apply object wrappers to profile the complexity of the shrink-wrap interfaces and
isolate the proprietary interfaces from the majority of the application subsystem
interactions. The same level of interoperability can be achieved with either approach, but
the architectural benefits of isolation can prove significant.

Figure 4.2. Systems Integration with Object Wrapping

IT-SC 120

What about security? Computer security is a challenging requirement that is becoming a
necessity because of the increasing integration and distribution of systems, including
intranet and the Internet itself. One reason why security is so challenging is that it has
frequently been supplied to the market as a niche-market or nonstandard capability. For
example, the COM+ technology and its ActiveX counterparts do not have a security
capability. When one downloads an ActiveX component on the Internet, that component
has access to virtually any resource in the operating-system environment, including data
on the disk and system resources which could be used for destructive purposes. The
implication is that it is not wise for anyone to be using ActiveX and COM+ in Internet-
based transactions and information retrieval. The object management group has
addressed this issue because of end-user questions about how this capability can be
supplied. The group adopted the CORBA security service, which defines a standard
mechanism for how multiple vendors can provide security capabilities in their various
infrastructure implementations. Computer security has been implemented in selected
environments. An understanding of the CORBA security service and how to apply it will
be important in the future to enable organizations to satisfy this critical requirement.

What about performance? Object-oriented technology has suffered criticism with respect
to performance. Because object technology is providing more dynamic capability, there
are certain overheads which are consequential. In the case of OMG and CORBA
specifications, it is fair to say that the CORBA architecture itself has no particular
performance consequences, because it is simply a specification of interface boundaries

IT-SC 121

and not the underlying infrastructure. In practice, CORBA implementations have similar
underlying behaviors with a few exceptions. In general, CORBA implementations can be
thought of as managing a lower-level protocol stack which in many cases is a socket-
level or TCP/IP layer. Because the CORBA mechanisms provide a higher level of
distraction which simplifies programming when an initial invocation occurs, the ORB
infrastructure needs to intelligently establish communications between the client program
and the server program. For the initial invocation, certainly additional overhead and
handshaking are required to perform this purpose. This handshaking would have to be
programmed manually by the application developer without this infrastructure.

Once the ORB establishes the lower-level communication link, the ORB can then pass
messages efficiently through the lower-level layer. In benchmarks of ORB technologies,
some researchers have found the CORBA technologies are actually faster in some
applications than comparable programs written using remote procedure calls. Part of the
reason is that all of the middleware infrastructures are evolving and becoming more
efficient as technology innovation progresses. On the second and subsequent invocations
in an ORB environment, the performance is comparable to remote procedure calls and in
some cases faster. The primary performance distinction between ORB invocations and
custom programming to the socket layer is involved in what is called the marshaling
algorithms. The marshaling algorithms are responsible for taking application data,
which is passed as parameters in an ORB invocation, and flattening it into a stream of
bytes which can be sent through a network by lower-level protocols. If a machine
generates the marshaling algorithms with custom marshaling, it cannot be quite as
effective as a programmer who knows how to tailor the marshaling for a specific
application. Because of the increasing speed of processors, the performance of
marshaling algorithms is a fairly minuscule consideration overall compared to other
performance factors such as the actual network communication overhead.

Proper distributed object infrastructures give you additional options for managing
performance. Because these infrastructures have the access transparency property, it is
possible to substitute alternative protocol stacks underneath the programming interfaces
which are generated. Once the application developer understands and stabilizes the
interfaces required, it is then possible to program alternative protocol stacks to provide
various qualities of service. This approach is conformant with best practices regarding
benchmarking and performance optimization. The appropriate approach is to first
determine a clean architecture for the application interaction, next to determine the
performance hot spots in the application, and then to compromise the architecture as
appropriate in order to perform optimizations. Within a single object-oriented program,
compromises to the architecture are one of the few options that one has. In a distributed
object architecture, because the actual communication mechanisms are transparent
through access transparency, it is possible to optimize the underlying communications
without direct compromises to the application software structure. In this sense, the use of
distributed object computing has some distinct advantages in terms of performance
optimization that are not available under normal programming circumstances.

What about reliability? Reliability is a very important requirement when multiple
organizations are involved in various kinds of transactions. It is not reasonable to lose

IT-SC 122

money during electronic funds transfers or lose critical orders during mission-critical
interaction. The good news is that distributed object infrastructures, because of their
increasing level of abstraction from the network, do provide some inherent benefits in the
area of reliability. Both COM+ and CORBA support automatic activation of remote
services. CORBA provides this in a completely transparent manner called persistence
transparency, whereas COM+ requires the allocation of an interface pointer, which is
an explicitly programmed operation that also manages the activation of the services, once
that operation is completed. If a program providing CORBA services fails, CORBA
implementations are obligated to attempt to automatically restart the application. In a
COM+ environment, one would have to allocate a new interface reference and reinitiate
communications.

An important capability for ensuring reliability is the use of transaction monitors. The
object management group has standardized the interfaces for transaction monitors
through the object transaction service. This interface is available commercially through
multiple suppliers today. Transaction monitors support the so-called acid properties:
durability, isolation, and consistency. Transaction monitors provide these properties
independent of the distribution of the application software. Use of middleware
technologies with transaction monitors provides a reasonably reliable level of
communications for many mission-critical applications. Other niche-market capabilities
that go beyond this level can be discovered through cursory searches of the Internet. In
conclusion, what is needed from commercial technology to satisfy application
requirements is quality support for user capabilities. This includes quality specifications
that meet the user's needs and products that meet the specifications.

In order to ensure that these capabilities are supported, new kinds of testing and
inspection processes are needed that are able to keep pace with the rapid technology
innovation occurring in consortium and proprietary vendors today. The end users need to
play a larger role in driving the open systems processes in order to realize these benefits.
In terms of application software development it is necessary to have on each development
team one or more object-oriented architects who understand these issues and are able to
structure the application to take advantage of the commercial capabilities and mitigate the
risks of commercial innovations that may result in maintenance cost. The use of
application profiles at the system profile level for families of systems and the functional
profile level for the mains should be considered when application systems are constructed.
It is also important for software managers to be cognizant of these issues and to support
their staffs in the judicious design, architecture, and implementation of new information
systems.

4.4 Making the Business Case

Software architecture has many potential benefits. Many of these are not realized by
some adopters of the architectural practices. We believe many of these shortfalls are due
to inadequate practice of architecture principles and disciplines. Some key benefits of
software architecture include various forms of reuse, which can provide benefits such as
reduced risk, reduced cost, and reduced time to market. Another important benefit of an

IT-SC 123

architectural approach is interoperability. Interoperability can only be realized if the
computational architecture is managed appropriately for application system development
across an enterprise. We covered some significant success stories for object orientation
and object technology in Chapter 3. In addition, many other documented studies show
how the technology can provide benefits if it is applied properly.

One of the best collections of object technology success stories is Paul Harmon's book,
The Object Technology Case Book Reference [Harmon 96]. It documents 18 case studies
of projects that were award winners in an annual competition sponsored by Computer
World. Some examples include a SmallTalk application by Allied Corporation where
they realized a 2400-to-1 reduction in operational cycle time. In other words the cycle
time for performing their task was reduced from nine weeks down to nine minutes
through the use of an object-oriented information system. In addition this application
reduced the required personnel from seven down to one, and the qualifications of that
person were reduced to a novice level, whereas formally they needed experts. In addition,
because of the reduction in staff there was a corresponding reduction in the amount of
capital required to perform this application capability.

Other examples from the case book include several systems at Boeing, one of which
reduced the time to market by 30% and reduced the time on some tasks by up to a factor
of ten. In another Boeing case study, they reduced the production costs up to 20% on
their applications. The general results for re-use benefits are fairly consistent, in that the
primary benefit is through the reduction in system development time, which can be as
large as 70%. The actual cost savings, if you include the development of the reusable
software usually hovers around the 10% to 15% level, because the development of
reusable software does require extra effort.

Another consideration is that most of the documented success stories for software reuse
are based upon companies developing software for commercial applications and applying
that software to multiple commercial applications, instead of applying the software to
internal applications.

Simplify designs by minimizing the number of interface operations.

In Figure 4.4 we describe the primary paradigm shift at the architectural level for how
new systems can be constructed using object technologies to provide enhanced benefits in
system extensibility and reduced complexity. Figure 4.3 is an example of this paradigm,
showing how many of the available standards only provide interoperability among
vertical functions of the same kind. It is in the interoperability across vertical functions in
a horizontal sense that the true benefits occur.

Figure 4.3. Vertical Domain-Based Integration

IT-SC 124

Figure 4.4. Hybrid Horizontal and Vertical Integration

In Figure 4.4 is a revised architectural concept which adds the horizontal capability to
the vertical integration. Figure 4.5 shows the potential benefits of a hypothetical
environment using the various kinds of architectural approaches. If the traditional
approach called custom integration is applied, the types of systems that are constructed
resemble the stovepipe configuration and quickly escalate in complexity, such that the
benefits of interoperability are overcome by the cost of creating and maintaining the
integration solution.

Figure 4.5. Comparison of Architectural Options

IT-SC 125

With highly coordinated integration, it is possible to reduce the complexity and cost of
extension down to almost constant factors. However, this level of coordination is not
possible or practical in most organizations today. With vertical types of standardization
the benefits do not vary significantly from custom integration, so there is a category of
vertical architecture standards which does not provide significant leverage across a wide
variety of applications. In the fourth column in Figure 4.5 the hybrid architecture
approach allows a variation in the level of benefits that can be controlled by the
application architect. Further details of how this approach is implemented are given in
our book The Essential CORBA [Mowbray 95].
Figure 4.6 translates these concepts into dollar figures for a hypothetical
enterprisewide system integration project. In order to achieve interoperability across this
organization with 20,000 users and 50 applications, the potential cost is as high as a
billion dollars, or $50,000 per seat. The numbers are based upon experiences and lessons
accrued over the last ten years. In order to extend the system with custom integration the
cost could be as high as $40 million in order to tie one new application into the existing
50. If you had to merge two companies, which is not an unusual occurrence these days,
the cost of integrating two companies that have already performed custom integration
across the board could be as high as $2 billion. If you apply a proper architectural
approach to systems integration, the cost can be substantially reduced. If you could define
a common architectural solution that applied across all 50 applications, the cost of
integration could be reduced to $500 per seat. The addition of a new application could be
reduced as low as $10 per seat, and if two organizations supported the same coordinated
specifications, it might already be the case that their internal systems would interoperate
without modification.

Figure 4.6. Potential Benefits of Architectural Coordination

Architect a small horizontal interface supported by all components.

This section has discussed several aspects of the business case for object technology. Paul
Harmon's Object Technology Case Book [Harmon 96] includes many examples of how
object technology has helped organizations reduce costs in time to market. In Chapter
2 we gave several additional examples of what is possible. The key to applying object
technology effectively is the proper application of architectural principles and practices.
Through these principles, it is possible to achieve some dramatic kinds of results in
integrating systems across large-scale enterprises. These results scale down to small
application configurations as well, as our experience shows.

IT-SC 126

4.5 Architecture Linkage to Software Development

If we apply proper architectural principles to create and maintain software structure,
potential cost saving could be 50% or greater [Horowitz 93]. Good software structure is a
function of the overall application architecture, the software interfaces or what is called
confrontational architecture, and the implementation itself (Figure 4.7).

Figure 4.7. Computational Specification Links Architecture and
Implementation

Computational interfaces may be the key enabler for improved software structure.
Software interfaces as specified in IDL define boundaries between modules of software.
If the software interfaces are coordinated architecturally, it is possible to define the
boundaries for application programmers so that the intended structure of the application
becomes its implemented structure. In practice we have found that the specification of
software interfaces provides an actual benefit to the programmers, because they then have
a guideline for how to implement software independently of other application developers.
When developers share the same specification, their software can then interoperate, even
though the applications are developed separately.

Figure 4.8 describes the overall process for how these kinds of results can be achieved.
Starting with a set of enterprise requirements for a community of users, a business object
analysis process can define the overall structure and characteristics of the application
environment. Business object analysis is an object-oriented analysis in which both end
users and object-oriented modelers and architects participate in defining new information
technology capabilities which satisfy the needs of the business and the constraints of the
technology implementation process. Once the business object analysis has produced
object models, there is a further step, a drill-down exercise to define the common
interface definitions. The common interface definitions are the software interfaces which
define the actual internal software boundaries for the system. This is a drill-down
exercise because these interfaces will specify the actual operations and parameters which
are passed throughout the software system.

IT-SC 127

Figure 4.8. Sample Architecture-Driven Process

The common interface definitions must be coordinated with individual software projects
in order for the appropriate lessons learned and legacy-migration considerations to be
incorporated into the designs. As the common interface definitions mature and are
applied across multiple projects, these definitions can become localized standards and
profiles for the community of developers. These can provide useful information for new
developers and commercial vendors that may want to participate in the interoperability
solutions. It is not sufficient for interface specifications to stand alone. One important
lesson learned that has been repeatedly discovered is that no matter how precise a
specification is, the definition of how applications use this specification is required to
assure interoperability. This requirement is equivalent to the profiling concept that we
introduced in Chapter 2.
Figure 4.9 shows how a set of specifications both horizontal and vertical can be
constrained with respect to a profile, so that application developers will be much more
likely to provide interoperability between separate implementations. There is a distinct
difference between specifications and profiles, which needs to be incorporated into
software process. A specification such as an IDL definition should be designed so that it
can be reused across multiple applications or families of systems. The profile information,
on the other hand, should correspond to specific applications and families of systems, so
that the conventions can be specialized without compromising the reusability of the
overall specification. Specifications can be standardized either locally within the
organization or on a more global scale through organizations like the object management
group. However, profiles should remain fluid. Profiles in their best case are documented
developer agreements for how standards specifications are used in specific instances.

Figure 4.9. Interoperability Profile

IT-SC 128

Identifying the appropriate categories of specifications to be standardized is a challenge
that many organization never overcome. The process which has been applied repeatedly
to achieve this purpose is shown in Figure 4.10. The problem for many individual
software development projects and end users is understanding the need for commonality
and how that need is distinguished from the actual design and architecture of specific
applications. The same problem arises in identification of common data elements when
commonality of information architecture is desired. The first step in the process is to
basically survey the available requirements and technologies and other kinds of input
which provide stakeholder impact on the selection of common functionality. Given that a
broadly based survey across the scope of the enterprise is impossible, a smaller group of
architects can get together and brainstorm some of the candidate facilities for interface
coordination.

Figure 4.10. Large-Scale Architecture-Driven Process

IT-SC 129

It is important to abstract the selection of these facilities in an architectural block diagram
to display how some facilities play roles that are horizontal in relationship to some of the
others. It is also important to define a diagram extraction in order to communicate the
structure of an architecture of this scale to multiple stakeholders in these deliberations. In
Step 4, the individual facilities identified earlier are defined and documented as to their
scope and basic functionality. This definition is necessary in order to constrain the drill-
down process, which will be necessary in order to drive out the details for the interface
definitions or data element definitions. In Step 5, a review process allows the various
stakeholders in the architecture to verify that their needs are being met and also to build
consensus across the enterprise for funding the reusable assets which will be defined
when the interfaces are created.

Step 6 in the process is to slow the pace of architectural decision making and stabilize the
architecture. After multiple iterations of the architecture document and review among all
of the potential stakeholders, it is necessary to conclude the exercise and publish the
document. It is then appropriate to tutorialize this information and make sure that there is
a thorough understanding of it across the developer community. This final step of
communicating architectural vision is often overlooked in many organizations, because
once approval is obtained, many architects assume that potential developers will be
constrained by the organizational decision and they assume that it is an appropriate
transfer of responsibility to individual developers to understand what has been
documented.

IT-SC 130

There is a key distinction between what happens in Steps 1–6 and what happens in Step 7.
In Steps 1–6 the design of the architecture is being delivered and there is open discussion
of potential extensions and changes, particularly among individual architects who are
highly cognizant of the design implications. In Step 7 the assumption is that the
architecture has been stabilized and that individual elements of the architecture are no
longer the subject of debate. It is not possible to properly disseminate the architecture if
the perception is that the debate is continuing. This phenomenon is the downfall of some
significant and otherwise well-conceived architectures.

Figure 4.11 shows the overall prices for architecture migration. The migration process
starts with some preexisting software including legacy applications, commercial software,
and the possible use of shareware or freeware. Mixed into this is the creation of new
software which will be implementing many new capabilities within the target system.
The architecture migration process is influenced by business needs and by the definition
of enterprise architecture that we described earlier, with a focus on the computational
interfaces which are the real keys to controlling software boundaries. Once the target
architecture is defined, then there is a continuous process of migration.

Figure 4.11. System Architecture Migration

The process of migration may take many years to realize and may never truly be
completed. The kind of migration that we recommend is sometimes called chicken-little
migration because it does not assume that on any specific date the legacy system will be
shut down and the new system turned on at potentially substantial risk to the organization
if the new system is not perfect. In chicken-little migration the capabilities of the legacy
which already provide business value in the capabilities of the target system can be
brought on line or transferred as the target system takes form. Figure 4.12 shows one
of the key concepts in how the target system is realized by leveraging legacy applications.
The legacy application will have one or more mechanisms for transferring information.
At a minimum a legacy system maintains some files on disk or perhaps a database, and

IT-SC 131

the legacy implication may have more than that; for example, it may have some
application program interfaces that are documented or other types of command-line
interfaces.

Figure 4.12. Legacy Object Wrapping Approach

Legacy applications may comprise a majority of commercial software having the same
kinds of mechanisms available for the purpose of integration. In our experience with
object-oriented integration we found a different set of mechanisms for virtually every
legacy and commercial package that we encountered. The purpose of the object wrapper
is to map from the preexisting interfaces to the target architecture interfaces which may
be defined using IDL. In addition to providing a direct functional mapping, there are
capabilities of the target architecture which should be considered and will reside in the
resulting object wrapper. For example, a distributed object architecture typically has one
or more directory services to enable applications to dynamically discover other
applications in the environment without hardwired programming of point-to-point
integration. The support for metadata director services is one of the new functions that
the object wrapper can provide. Other kinds of functions in the wrapper include support
for security, for system management, and for data interchange.

Object-oriented technology enables the creation of significant applications. Through
survey research we have discovered some of the key challenges to the migration to object
technology. The key challenge is the difficulty in establishing an architecture for the
information system for the enterprise. To quote one of our sources, people start in the
middle of the software process, immediately begin development without doing their
homework, with no vision, no business process, and an incomplete architecture. Another
challenge is in management of the object-oriented process, which differs in some
fundamental ways from how software processes from previous paradigm were managed.

IT-SC 132

To quote one of our sources, people are solving tomorrow's problems with today's
technology and yesterday's methodology. Another challenge that we frequently
encountered was a difficulty in sustaining an architecture during development and
maintenance, once an architecture had been established. To quote our sources, it is easier
to scope and start over rather than to figure out what they did. Another source noted that
requirements evolve during design implementation, leading to hack design.

Other types of challenges were perceived as smaller obstacles than one might expect. For
example, technology requirements were accorded a fairly low priority in the migration to
object technology, compared to architectural and management issues.

4.6 Architectural Software Notation

In this section we will convey a basic familiarity with software notations that is essential
for all architects. If you are very experienced with software design and the Unified
Modeling Language (UML), you can safely skip this section. Understanding these
notations enables you to understand the business implications of information technology.
This section uses a subset of the UML including those features which are commonly used
and commercially supported in computer-aided software engineering tools today. We
recommend that your organization adopt UML in order to facilitate communication in
general computer literacy for interpreting architectural documentation.

Before UML, there existed a large number of proprietary information technology
diagrams and notations (Figure 4.13). In fact, every authoritative practitioner of object
orientation and other information technologies had their own notation—for example,
Booch notation, Odell notation, object modeling technique (OMT) notation, and so forth.
It was a general consensus that approximately 70% of the concepts that were being
modeled through these various notations were overlapping. It took the industry many
years to discover how to unify notations in these common areas and provide a way to
extend the common notation to capture their specialized extension.

Figure 4.13. Object-Oriented Modeling Notations

IT-SC 133

The unified modeling language is a consensus standard of the Object Management Group.
UML is a unique standard because it is also supported by the Microsoft Corporation,
which participated actively in the OMG process. It captures the common concepts from
the proprietary notations in a uniform manner, and it is designed for extensibility, so that
particular kinds of extensions can be defined consistent with the standard. In particular
the UML standard includes extensions for business modeling and for objectory process.
UML contains and represents common notational conventions for information systems
models. These include object-oriented models as well as more general business process
models in other forms of information representation. Authorities such as David Harel
have described the creation of UML as an industry standards achievement as significant
as Algol 60. Today, UML is enthusiastically supported by most object-oriented software
authorities and major vendors including IBM and Microsoft.

The UML standard includes several sections. The UML notation guide is the
specification that is most likely to provide benefits. The diagramed notation is defined
along with a minimal set of semantics that defines the meaning of the notation. There also
exists a much more elaborate semantic description of UML called the UML meta-model,
a standard that provides additional details about the fine-grained issues of diagram
meaning. In addition, UML includes an object constraint language, which is a textual
notation using first-order logic that enables rigorous description of diagram-based
constraints.

There are two categories of UML diagram types, as shown in Figure 4.14. Static
diagrams represent the logical structure of information objects. Dynamic diagrams
represent the behavior and activities of these objects. The static diagram types include use
case diagrams, static structure diagrams, and implementation diagrams. Use case
diagrams are used for enterprise viewpoint modeling and other kinds of top-down
analysis to discover the key functionality of information systems. Static structure
diagrams are used for information viewpoint objects as well as other important
descriptions, because they identify exclusive objects and define constraints on those
objects, including the object attributes, the object operation, and other characteristics.

IT-SC 134

Implementation diagrams enable the description of the computational components as well
as the technology objects and how they are deployed and allocated.

Figure 4.14. UML Diagram Types

"Modeling is a craft and at times an art" [Rechtin 97].

Dynamic UML diagrams include interaction diagrams and state charts. Interaction
diagrams represent the time-based behavior of groups of objects exchanging object-
oriented messages. State chart diagrams are usually used to represent the internal states
and transitions of individual objects.

Figure 4.15 represents a running example that we will use to help explain the
capabilities of UML notation. In this example we are modeling various characteristics of
a purchasing system. This is a contrived example, and we will only define aspects of this
system which are useful for describing the features of UML. In this purchasing system
we have employees who engage in the acquisition of capital equipment. We have
corporate buyers who have the authority to conduct purchasing transactions, and we have
vendors that manufacture and market capital equipment that the employees need.

Figure 4.15. Purchasing System Modeling Example

IT-SC 135

Figure 4.16 is an example of packages, used to represent the key architecture
viewpoints. A package is used to represent any grouping of UML modeling elements,
much as parentheses are used to group words in sentences. In modeling tools, packages
are used to represent subsidiary diagrams. Wherever a package appears, there is yet
another more detailed diagram, viewable on another modeling screen or page.

Figure 4.16. Example of UML Packages

Figure 4.17 is a use case diagram representing the top-level functionality of the
procurement system. In this diagram we have represented the boundary of the
procurement system as a UML package. UML packages appear as file folders in
diagrams and usually represent the existence of an embedded diagram within a particular
viewpoint. In a case tool, clicking on a package will reveal a more detailed diagram from
that viewpoint of the system. In our use case we have a number of stick figures which

IT-SC 136

represent actors that participate in using the system. Actors are analysis objects which in
most cases are external to the system. Each of the use cases is represented by an oval in
the diagram and represents some major function of the system which can be detailed later
as analysis and design progresses. Dependencies between actors in use cases are
represented as arrows in this diagram (Figure 4.17). The power of use case analysis is
that the diagrams are simple representations of what the system does. Use case analysis
forces the modelers to focus on the highest priority capabilities of the system that provide
value to the users.

Figure 4.17. Use Case Diagram Example

The second type of diagrams in UML are called static structure diagrams. Many people
call them class diagrams. The purpose of static structure diagrams is to identify the
concepts and constraints that are structural within the information system. Static structure
diagrams contain two types of entities including classes and objects. Classes represent a
specific category of behavior. Objects represent specific instances of classes. Classes and
objects are represented with rectangles in the UML. Objects are distinguished because the
name appearing in the top cell of the rectangle will be underlined. Whenever we have this
underlined element in a UML diagram, we generally mean that we are representing an
instance of that entity.

Figure 4.18 is a static structure diagram for the purchasing system. In this case we
have a package which represents the purchasing communities and we have various
information objects that represent various kinds of documents involved in the purchasing
process. For example, there are purchase requisition documents, procurement checklist

IT-SC 137

documents, and purchase order documents. Relationships between the classes are
represented by lines. These lines are called associations. Another common notation
shown in Figure 4.21 is a comment or note, which is represented by a rectangle with
the top right corner folded in. A note is attached to one or more model elements and
specifies additional constraints or semantics for the diagram.

Figure 4.18. Structure Diagram Example

Figure 4.21. Structure Diagram: Purchase Requisition Detail

IT-SC 138

Figure 4.19 is another static structure diagram showing the employee type class and
various subclasses including employee contacts and purchasing contacts. The unique kind
of association that represents inheritance is shown in Figure 4.19 as a line with an
open-ended arrow. This is called a generalization association. Figure 4.20 shows major
forms of associations appearing in UML. The purpose of associations is to show
relationships between model entities. These relationships may be one-to-one, one-to-
many, or other types of cardinality constraints. Most associations in UML diagrams are
plain lines between objects and classes. An association can have a name attached to it and
an identification of roles at each end of the association. Each of the roles can be identified
by numbers or ranges of numbers. If the asterisk symbol is used, this means many,
which denotes any number from zero to infinity.

Figure 4.19. Generalization Relationship Example

IT-SC 139

Figure 4.20. Representation of Object Associations

Other types of associations include generalization for representing inheritance,
dependency for showing general kinds of change relationships, aggregation for
showing part-whole relationships and collections, and then composition, which is a
stronger form of aggregation that implies that the life cycles of the related objects are
tightly coupled. In other words, in composition, if the aggregate object is deleted, all of
the objects that are part of that composition are also deleted (Figure 4.20).

IT-SC 140

Figure 4.21 is yet another static structure diagram and shows more of the details of
associations and attributes and operations that UML can represent. When particular
elements of UML are not explicitly represented, such as operations and attributes, that
does not mean that these constraints do not exist. It simply means that in this particular
model for this purpose it was not necessary to represent that constraint. Figure 4.21
shows several objects with explicit representations of attributes and operations. If the
class element is represented explicitly, it has by default three compartments. The top
compartment is the name of the class; the second compartment is a list of the attributes of
the class. Each attribute represents state information, which may be public or private. The
state information can include representation of data type and default initial values. The
third compartment contains operations by default. The operations are identified by their
visibility, whether they are public or private, the operation name, a parameter list, and a
return type. All of these may be optionally included except for the operation name, which
is required.

The static structure diagram is the most important part of UML to understand properly,
because it is the richest set of descriptive features in UML and is useful for virtually any
application of modeling static structure and constraints. Component diagrams are another
type of static representation. Figure 4.22 is an example showing various components
and dependency relationships between them. Component diagrams are analogous to the
computational viewpoint objects that we described earlier. Component objects are
software modules that have interfaces and dependencies upon other computational
objects. Figure 4.22 shows the computational objects as rectangles with interface
components.

Figure 4.22. Component Diagram Example

IT-SC 141

Deployment diagrams are another form of structural representation. They are very simple
and may not be sufficiently sophisticated for many of your modeling needs. We
recommend the use of static structure diagrams when complex constraints need to be
represented. Deployment diagrams include processor symbols, which represent
independent computing elements, and device symbols which represent dependent
computing elements such as peripherals. Figure 4.23 is an example of the deployment
diagram. The processing elements have shaded surfaces and the device elements do not.
There are associations between these deployment objects that represent various kinds of
physical connections. Dynamic modeling diagrams include state chart diagrams and
interaction diagrams.

Figure 4.23. Deployment Diagram Example

IT-SC 142

Interaction diagrams come in two flavors, and these diagrams are isomorphic. In other
words, for any given collaboration diagram, there is an equivalent sequence diagram
which contains the same information represented differently. This applies in the reverse
direction as well. Collaboration diagrams resemble ordinary static structure diagrams
except that we are representing the dynamic time-base behavior of a set of objects which
is executing. Within these diagrams we have ordinary UML objects, which have
underlying names and messages that are directed associations between these objects.

Figure 4.24 is an example showing an execution sequence and the order of messaging
of this information exchange between the object and the purchasing system. The order of
object message transmission is indicated by a numbering sequence, one, two, three, and
so forth. These imply a time-based dependency between these messages and how they
interact with the information objects. Sequence diagrams, another very important form of
UML notation, are used to convey the details of use cases and how use cases will operate
as well as showing the description of the system in a manner that is readily interpreted by
most users.

Figure 4.24. Collaboration Diagram Example

IT-SC 143

Sequence diagrams, like collaboration diagrams, contain objects which are rectangles
with underlying names in the notation. Figure 4.25 is an example of the sequence
diagram showing the purchasing system completing a purchase transaction. Notice that
the messages and objects in Figure 4.25 correspond exactly to the transaction that we
represented in the collaboration diagram in Figure 4.24. Each object has a dashed line
extended from it which runs down the paper. This is the object life-cycle line and
represents the time when the object is actively processing a particular message. The
object life-cycle line runs down the page in increasing time so that we see a chronological
progression of messaging between the objects.

Figure 4.25. Sequence Diagram Example

IT-SC 144

The final type of UML diagram is the state chart. State charts represent control flows that
cause state transitions. Typically, state chart diagrams represent the state of a single
object and the transition between these states as the object executes. Figure 4.26 is an
example of a state chart diagram for our purchase system example. In this case we are
representing the states of the buyer object. The state chart represents several decision
points and their representative states which are significant to the object's functioning.
These states can be used to determine the overall structure of the source code for this
object.

Figure 4.26. State Chart Example

IT-SC 145

"If you can't explain it in five minutes, either you don't understand it
or it doesn't work" [Rechtin 97].

4.7 Conclusions

We began this chapter with a discussion about managing software complexity, and we
end it with a drill school lecture on software modeling. Software architects must know
the fundamentals as well as be able to use them creatively to achieve architectural goals.

If your organization has not yet adopted a standard notation. and your developers are not
literate in it, UML provides an opportunity to introduce new modeling practices. UML is
a standard notation from the Object Management Group, an ISO-affiliated organization.
UML is an industry consensus supported by most of the major authorities in object-
orientation. UML's key benefit is its clarity of description, since it is relatively devoid of
cryptic symbols, such as "crows' feet" used by precursor notations to represent cardinality.
UML is the first object-oriented modeling notation which is widely recognized and
understandable by the majority of software practitioners.

4.8 Exercises

Exercise 4.1

Managing Complexity Using Architectural Options

Consider one approach to a distributed collection management service. You could model
it after the approach used by many C++ tools vendors and specify interfaces for

IT-SC 146

numerous collection types (bag, list, keyset, etc.), operations to provide type-specific
operations such as a comparison between objects, and commands for executing processes
on objects stored within the collection. (See Figure 4.27.) Assume the distributed
collection management service takes each of these characteristics to the extreme. Use the
architectural options described to refactor the design into a more manageable set of
interfaces.

Figure 4.27. Distributed Collection Management System

Background for Solution:

Step 1.
The management of elements in a collection is fairly straightforward and can be
implemented using various design tradeoffs. Collection types such as bag, list
queue, etc., are different ways to implement collection man-agement behaviors.
Sweep it under the rug and ignore it directs us to abstract the collection
management behavior to a higher level of abstraction and not expose the specific
implementation details to client applications.
Step 2.
The distributed collection management service described handles
three separate responsibilities: element management, type-
specific comparisons, and commands. Such a design can be
sliced into three simpler interfaces, each of which focuses on just
one area of responsibility. Separate out the notion of generically
managing collection elements, as generic elements, into a single
interface which hides the details of the collection implementation.

IT-SC 147

Define a separate command interface which operates on a list of
objects rather than a collection. The command and collection
interfaces should not have any dependencies between them. This
approach to design is strictly superior to other approaches where
the collection expects a command and iterates over its elements,
executing a command on each item. In the new design, the
responsibilities are sliced so that each command decides how to
iterate over the set of elements provided rather than the
collection. The collection no longer needs to know about the
command interface, and the command does not know about the
collection.
Step 3. The dice it architectural option is used to define the third
interface which separates out the vertical type-specific behavior
from the horizontal capabilities of element management.
Commands can have a standard interface which can support
both horizontal commands, operations which do not refer to the
specific object subtype, and vertical capabilities, where
operations depend on the contents of the object. Horizontal
commands would include generic operations which refer to the
interface repository or perform general logging. Vertical
commands would include operations which require inspection of
the object contents, such as sorting and data transformations.
The third interface should be a standalone version of the
operation's interface which may be used in the implementation
of a command. Most frequently, it may be appropriate to
collocate the type-specific operation's implementation with the
command sets which require it.
The new design produced by applying these architectural options
would be more component oriented and capable of supporting a
greater variety of applications. However, it is less object oriented
in the traditional sense, as the collection itself no longer
encapsulates as much functionality. However, it provides a
better base for building fully encapsulated objects, which
delegate to the new collection components rather than
reimplement such behavior in a new object.

IT-SC 148

Chapter five Leadership Training

There are some definite benefits to being a soldier—the rush of being a part of
something larger than yourself, having a well-defined role which is important and vital to
the success of great enterprises, the camaraderie of fellow soldiers, and the belief that if
everyone performs as well as you, victory will soon be at hand. However, the reality of a
battlefield is that not all soldiers are equal. Some troops are well trained, well equipped,
disciplined, and possessed of a great deal of combat experience; others are recently thrust
into battle straight from civilian work, lacking knowledge, discipline, experience, and
even the will to compete against hostile enemy forces. Similarly, in the software industry,
there is a great degree of difference in productivity between the best and worse
performers. For the most part, raw recruits in the software industry frequently have the
will and a fair degree of knowledge but need a proper environment to acquire the
discipline and experience required to excel. Therefore, more experienced and disciplined
developers are forced to leave their comfortable foxholes to assume the greater
responsibility of leading a team of developers with diverse development experience into
the greener pastures of effective software development.

5.1 Leadership Is a Necessary, Learnable Skill

It is rare that a talented developer can immediately excel when first thrust into a
leadership role. Furthermore, close examination of those who are successful typically
reveals a history of informal leadership activity such as mentoring and assuming
responsibility for tasks such as configuration management, which already affects a large
number of fellow developers. Fortunately, leadership, while being a necessary part of an
architect's skill set, is also a learnable skill.

Special characteristics of architectural leadership must be emphasized in order to
maximize a software architect's chance for success. They are vision, integrity, and
decisiveness. Vision provides a concrete goal for a development team to focus upon.
Without having a vision, it will be difficult to justify the rationale for the many technical
decisions which are made throughout the development life cycle. A high standard of
integrity is essential for motivating team members to look beyond their own self-
interest and consider the various issues from the viewpoint of what is best overall rather
than easiest for them. Finally, an architect needs to be decisive, both to facilitate
progress and to maintain the confidence of the team that the technical issues are
understood well enough to be quantified and acted upon.

It is the job of the software architect to clearly articulate a compelling vision for the
software project. The vision provides the motivation for the team and provides the basis
for making tradeoffs in order to accomplish the overall vision. This is extremely vital in
software, where success can be realized through a variety of methods, each with its own
unique set of tradeoffs and consequences. The architect's vision becomes the software
project blueprint, the clear path through which the overall concept of the software is
realized in an actual software product.

IT-SC 149

It is absolutely essential that the software architect is honest and has the absolutely
highest standard of integrity. With software, the product is extremely malleable, lending
itself to a tremendous number of approaches for accomplishing any particular task. As the
technical leader, the architect has to advocate a particular approach as the most desirable
technical solution. If the architect's actions are perceived as being motivated by other than
technical reasons—for example, to appease various political forces in an organization—it
undermines the trust of team members who are expected to preserve the architectural
vision.

Finally, the most vital attribute a software architect must have is decisiveness. When a
technical issue arises which requires the architect to make a decision, more likely than
not the worse decision is to avoid making any decision at all. Doing so impedes, rather
than facilitates, progress, and it frustrates people who can be far more effective once the
decision is made. Remember that failing to decide something is also a decision, just one
that is unlikely to result in any sort of resolution and may run an increasingly high risk of
magnifying the problem. Not being decisive demonstrates to others both a lack of
urgency and a lack of confidence in resolving technical issues. Either of these is
sufficient to compromise the architect's ability to serve in a leadership role, but the
combination is a recipe for the certain alienation of other team members who do possess
these vital qualities. If the architect does not exhibit a determination to have the
development effort succeed in its goals, then other team members will question whether
the team and their role within it are meaningful and whether the team goals are worth
pursuing.

5.2 The Architect as Team Builder

The software architect leads by bringing the team together. As the most visible and
technical of the management staff, the architect is in a position to turn the mindsets of the
team members in a common direction. All but the most dysfunctional of teams want to be
successful. However, where people differ is on the details of what it means to have a
successful outcome as well as the best means of achieving it. To correct the first of these
issues, the architect must continually communicate the vision of what the final outcome
of the development team can be if the management and technical plans are followed. This
creates a willingness in team members to give the day-to-day decisions the benefit of the
doubt as long as they believe that the end goal is sufficient to satisfy their own personal
criteria for project success.

Once a team is on the same page as to the overall vision and desired outcome, the
common view of where the team is going serves to lessen the contention about what is
the best means to achieve it. Rather than suspecting that the motives of other team
members are different from their own, people are more willing to consider various
solutions and defined objectives on their technical merit. In a software project, any time
the discussion can be converted into a purely technical discussion rather than one based
on personality and ego management, it is a major win in moving toward the project goals.

One important lesson software architects must learn is to trust the skills and talents of
other people on their team. A common mistake of new software architects is to

IT-SC 150

micromanage other team members. This results in one of two predictable outcomes. (1)
The other developers may become resentful of your lack of trust and confidence in them,
resulting in a significant negative impact on their productivity with regard to the team
goal and overall project vision. (2) Even worse, the developers may eagerly allow the
architect to assume the bulk of the project responsibilities. This creates the illusion of
working in the short term, but it breaks down quickly as the reality sinks in that the
architect cannot work as effectively on his/her own as with a high-performance team of
dedicated developers focused on accomplishing the same outcome. Therefore, having
trust in other team members to execute tasks independently is critical for the overall
success of the team. Yes, this involves undertaking risks which some people, in hindsight,
may claim are unnecessary. However, taking the long view, it is important that others
accept and live up to their individual and team responsibilities in order to maximize the
overall output from a development team.

A software architect is sometimes required to mediate between conflicting demands of
project management and higher-level stakeholders in a development project. Often the
demands on the software developers were made higher up in the management chain than
the software architect without detailed knowledge of the development staff that will be
responsible for delivering on whatever claims and expectations were formulated. In order
to be effective, a software architect focuses first and foremost on the needs of the
development staff. At some level, every project plan ever made is a fantasy. It is the
flesh-and-blood developers who must feel respected and motivated enough to produce the
concrete project deliverables. The software architect must be aggressive in serving the
needs of developers through communicating with management, overseeing the purchase
of productivity-enhancing tools and COTS products, ensuring proper recognition for the
team, etc. After all, the ultimate value the architect adds is to ensure that the developers
are efficient and effective in performing their tasks.

5.3 Always Insist on Excellence in Deliverables

A responsibility of the software architect is to review developers' work products.
Inevitably, in the early stages of a new effort, it is likely that several of the work products
(use cases, designs, test plans, etc.) are going to fall short of the architect's expectations.
Most likely, the disconnect between the architect's expectations and the work produced is
due not to malice or a lack of effort but rather to a lack of understanding of what
precisely the architect's standards are. It is in these early stages where detailed review is
essential and where the architect must insist on excellence in the work products produced.
This should be done professionally and politely, however; the quality and level of effort
must not be compromised. If the architect does not insist upon excellence in the early
development process, it is unlikely that it will ever be achieved in future iterations.

An architect should expect some resistance the first time any experienced developer has
to undergo a work review. Typically, the architect will receive arguments about the worth
of producing deliverables which satisfy the standards, about whether the task description
was clear enough to sufficiently describe the desired deliverables, and a thousand or so
similar variants, most of which blame the standards and the architect rather than the
developer. The software architect's best course of action is to be gracious and accept full

IT-SC 151

blame and responsibility, but insist that the additional work required to achieve the
desired deliverable is performed in a timely manner. If this is done well, the most avid
detractors of the initial standards will eventually become their staunchest defenders, once
their value has been demonstrated later in the development process. When integration
time is reduced by two thirds by having clear and very specific design documents, no one
on the team will want to proceed to implementation and integration without them ever
again.

The software architect must be versatile and set an example for the rest of the
development team to follow. For example, if the project is at risk of being delayed
because a critical design is missing, frequently the best contribution the architect can
make is either to sit down with the group and jointly develop the design, or sometimes,
particularly if the subsystem slipped through the cracks at task assignment, to produce the
design independently. In either case, the architect should adhere to the same process, in
terms of documentation guidelines and reviews, that everyone else on the team adheres to.
Similarly, if integration is delayed because of problems in debugging tricky parts of the
source code, ideally the architect will sit with the developers and, if all goes well, assist
in rapidly resolving the obstacles. Not surprisingly, this aspect of being a software
architect frequently comes easily to new architects, as it was a responsibility also
assumed by them as experienced developers. The more difficult part is finding the time to
continually develop the architect's skill set so he can be equally versatile after several
years as a software architect.

However, there are a few pitfalls which must be avoided. As the software architect, you
have the most visible technical role. Like it or not, you are also the technical role model
for the team and your actions directly impact their actions and mentality. Therefore, if
you take or suggest shortcuts and kludges to quickly resolve a development issue, like it
or not, you are implicitly advocating that others use similar means to resolve issues which
they find problematic. Also, rest assured that less experienced developers will encounter
many more things which are problematic than will the architect, and they will be more
than content with adding numerous kludges to source code rather than asking for help in
resolving the problems according to the known architectural principles. Similarly, if your
code lacks a unit test or is not related back to the requirements specification, you will
immediately discover several developers who automatically are following your lead.
Therefore, as the architect, you must conduct your efforts exactly as you expect others to
conduct their own behavior. It is far easier to start off with a good example and maintain
it, than it is to explain why you didn't and yet still expect others to conform to your stated
standards.

Etiquette for Software Architects

As silly as it may sound, an investment in a book on general etiquette and the
time it takes to read and absorb it will always pay off handsomely for a software
architect. Most of the problems which will hurt the productivity of a
development team are people problems rather than technical ones. Etiquette can
frequently head off the people problems before they escalate into major

IT-SC 152

obstacles. For the one or two individuals who are too foolish to heed the above
wisdom, here are a few of the most basic techniques, strictly etiquette related,
which will help you succeed as a software architect:

Before you criticize work anyone else has produced, start the conversation off
by identifying a few things you liked about the work.

Generalize criticism into a heuristic, using specific cases as examples of the
heuristic not being followed, rather than immediately criticizing specific
instances.

Do not talk to people only when something is wrong. Let people know when
you like their work and efforts. Sometimes, just ask how things are progressing
and how you can improve upon your efforts.

Just as serving as an example to the development team comes easily to most new
software architects, having confidence and courage when first appointed as the architect
typically does not. At a minimum, a software architect's courage should take two forms.
First, no technical question should ever be feared by the architect. The decisions of the
architect should be made based on his best technical knowledge. Not every decision is
popular, but they are all based on understanding the various tradeoffs in making use of
various technologies and design approaches. Any question should either be answerable
by recapping the known tradeoffs or be a source of information which may require that
an existing tradeoff be reevaluated. Neither case reflects badly upon the architect, since
honestly considering questions and hearing new information, even from critics, is a
perfectly valid technique of information acquisition! A software architect should
welcome both types of questions without getting agitated, as they both provide practice in
articulating the project's architectural vision and may lead to cases where the vision is
further refined in light of new information. Second, the architect should never be afraid
of making a concrete decision.

One constant in software development is that good software architecture never just
happens. It must be planned, monitored and defended over the lifetime of the software. If,
as a software architect, you are not constantly monitoring the execution of software
processes to verify that the architectural principles and guidelines established at the outset
of the project are adhered to and maintained, then you are failing in your role. A software
architect cannot be effective without actively seeking out the real progress and direction
of the project from the developers who are performing the actual work.

As a software architect, you have knowledge and information which frequently exceed
that of many team members. As a general rule, the architect should be willing to share
information with other team members and trust them to use it constructively. For example,
if the team is incorporating a technology with known limitations, such as the CORBA
marshalling delays with complex data types, then it should be willing to acknowledge the
problem and discuss why the benefits of the technology are sufficient to overcome its
limitations. While information sharing may occasionally be damaging—for example, by
bringing up the limitations to higher-level management who may be unable to adequately
understand the technical tradeoffs—in the long run it builds trust among team members

IT-SC 153

and enables them to develop solutions rather than waste time rediscovering known
problems. An environment where the cumulative knowledge of the entire team can be
brought to bear, both in solving problems and in seeking out still more knowledge, is the
most ideal for software development. Little is more disappointing than seeing a talented
architect attempt to horde information, which typically becomes obsolete at a faster rate
than it can be stockpiled.

Seven Habits of Highly Successful
Software Architects

Keep it simple. When communicating to team members various
architectural concepts or software mechanisms, resist the temptation to provide a
complete and detailed explanation of how things work or a detailed comparison
against all the alternatives in front of a group. Instead, say enough to
communicate the idea at a high level, just low enough to be understood in
principle, and let individuals do their own homework or meet with you
individually to address their specific concerns.
Let others defend the architecture. It is always preferable to
have someone else respond to a technical concern rather than have the software
architect appear to be the sole source of knowledge. It reinforces teamwork,
provides the architect insights from people who agree as well as disagree, is a
key aspect in mentoring others, etc.
Act, don't argue. Arguing technical points in a meeting wastes time,
hurts feelings, and seldom if ever fully resolves any technical issues. When such
an argument starts, act—either assign people to get or verify the relevant
information, set up a meeting specifically for resolving the debated topic, or, if
time requires an immediate course of action, lay down the law explaining why
the time constraints force an end to the matter.
Keep an eye on the prize. Always be aware of the end goal. It is easy
to be distracted by tasks and smaller technical issues, and frequently other team
members will succumb to one form of tunnel vision or the other. However, it is
vital that the architect is always focused on the overall vision of the system and
can relate every task or technology to how it contributes to the end goal.
Be willing to change, but never too much at once. After
the initial bootstrapping of a software development effort, be wary of
implementing too many process improvements all at once, as there is a risk of
compromising the effective parts of the process.
Learn where to stop. Resist the temptation to go into too many details
and to micromanage design decisions. For example, it would typically be
enough to specify that caching is required in client applications and that the
caching code should be reused throughout the application. However, detailing
the specific caching algorithm used or writing the caching pseudocode is
probably overkill. Learn to trust other team members to provide design and
implementation details and let them come to you in case of difficulties.
Know how to follow. If there is a lead architect you report to, or even if

IT-SC 154

you delegate the responsibility for an issue to someone else, avoid publicly
confronting others on major design issues. This is accomplished by knowing
ahead of time what is going to be discussed and the reasons for the various
decisions. This is a key aspect to developing a focused, high-performance team.

The software architect serves as a technical mentor to other developers on a project.
Often the architect is asked to help resolve technical problems or mediate a technical
dispute between two parties. Rather than simply resolving the technical problem or
deciding between the two alternatives, the software architect should go the extra mile. In
the case of technical problem solving, the architect should walk the developer through the
steps necessary to resolve the problem at a level of detail low enough that the developer
can resolve similar problems in the future without additional aid. In mediating technical
disputes, the architect should articulate the issues and design tradeoffs which make a
particular alternative more desirable in a particular case than the competing alternative. If
possible, the architect should figure out the concerns being addressed by the inferior
alternative, and point out what elements are missing in the current case which, if present,
would make that alternative more desirable. Ultimately, team members should feel that
interacting with the architect is a learning experience. Furthermore, if the same technical
issues are brought to the attention of the software architect, take the developer to task and
ask why he/she doesn't feel comfortable resolving such problems without your assistance.
Eliminating road blocks to applying new knowledge is an easy way to improve the
efficiency of a development team.

A software architect should always be willing to hold team members accountable for
their lack of productivity. If a design is overdue, it is reasonable to ask for the reason for
the delay and a description of where the elapsed time has been spent. Similarly, if a
coding task is delayed, getting specific details about whether the delay was caused by
problems in the design, debugging a tricky section of code, or unforeseen complexity in
the implementation is vital. Such information can lead the architect to gain productivity
increases across the board by conducting debugging tutorials or by improving design
review procedures. Also, always make it clear that as soon as delays are anticipated,
developers have an obligation to let the project manager know so tasks can be replanned
accordingly.

Most development efforts, even ones with mature processes and an experienced team,
cannot avoid some degree of chaos. Left unchecked, the unexpected technical and
organizational issues could occupy just about all of the software architect's time.
However, any software architect needs to ensure that the bulk of his/her time is devoted
to issues internal to the development team. An effective architect must always be
available on relatively short notice to attend to the team's internal details, which may
delay development if not attended to promptly. These issues include resolving disputes
over interfaces between various subsystems, weighing in on problems caused by product
upgrades, or providing verification that certain design approaches aren't in violation of
the architect's vision of the system.

5.4 Architect's Walkthrough

IT-SC 155

A number of development milestones occur that require the attention of the software
architect. Unless the architect is available, the development team may be faced with
either waiting for approval—the kiss of death for rapid development—or making
assumptions that may not always be accurate. Correcting these incorrect assumptions at a
later date is always substantially more expensive and difficult than getting them right
initially. Therefore, an architect must give the impression that he/she is always available
with the expectation that the internal demands of a development team will be greatest
early in the development process through the design process, tapering off somewhat
during implementation, testing, and deployment. The best way to be available is to walk
around periodically and talk to people about their progress. If any significant issue comes
up, set up an appointment between the two or three people most involved and discuss it at
some time separate from that devoted to the walkthrough. This limits the time spent
during the walkthrough and gives the people involved a chance to work things out on
their own before the meeting. If the meeting continues to be necessary, everyone will be
prepared to focus on a specific problem, which, if properly facilitated, can lead to a short,
highly productive meeting.

Another benefit of the walkthrough is that you get a lower-level understanding of the
project details than you would from just meeting with the team leaders. Restraint is
required to remember that the primary objective of the architect in a walkthrough is to
listen and understand the problems rather than immediately to attempt to resolve every
issue. In fact, the less direct guidance given in a walkthrough, the better. Rather, think
about the problem and make suggestions to the appropriate team leader. This will keep
the team leader in the information loop, allowing him/her freedom in incorporating your
suggestions into the overall team direction. In addition, it will provide you with greater
insight into team dynamics in future walkthroughs, when you can gauge to what extent
your suggestions were accepted by the overall team. The architect should avoid making
too many suggestions directly to team developers, as these suggestions are frequently
taken as mandates, regardless of the direction set by the team leaders. Without fail, the
political and organizational problems resulting from such actions will overshadow any
short-term technical benefits. In general, the architect should always be willing to listen,
but direct action, and even suggestions, must be performed with care, taking the needs of
the entire development effort into consideration.

So after nine months or so with the same team, you realize that there are still hotly
debated topics, people who just don't like each other, and a project that is falling behind
schedule. The issue most new architects face is evaluating whether their efforts have
actually made a difference on a particular software project. Fortunately, there are a few
heuristics which are effective for recognizing when you are succeeding as an architect.
Unfortunately, the ultimate metric, repeatably delivering high-quality software on time
within the estimated constraints, typically takes several years to establish.

Heuristic 1: Arguments within a team are over increasingly trivial
subject areas.

With any group of software professionals of diverse backgrounds, there will always be
disagreements of some kind or another. Early in a project new to software architecture,

IT-SC 156

the typical disagreements focus on whether or not XYZ is the right thing to do. Later, if
the architect is successful, there is an implicit agreement on what to do, and the developer
battleground shifts to arguments about how to accomplish XYZ. These arguments will be
just as heated and impassioned as the previous wave of disagreements, but the debated
issues are at a lower level. Later, if there is an implicit buy-in on how to accomplish XYZ,
new arguments will arise, again just as heated, on what an implementation of how to
accomplish XYZ looks like. While the volume levels and passion may be constant and to
an outside observer the internal problems appear unchanged, it is the shift of focus which
indicates vision, architectural, and design consensus. Achieving this consensus is a
monumental accomplishment and eliminates a slew of problems which would arise did
such a consensus not exist.

Heuristic 2: When it appears that there is no consensus initially,
consensus is easy to achieve after listening to all sides.

Frequently, when establishing the overall vision and defining the architecture for a
project, complete consensus is nearly impossible to achieve. For whatever reasons, there
will always be a few people who will need concrete evidence of the benefits of the
approach on their own personal level, before they will accept any vision save their own.
Later, if a consensus is established, there will be roughly the same number of
disagreements. However, most frequently, one side or the other is mainly motivated to
ensure that its concerns are acknowledged and known to the team and is not actually
demanding that all of its issues are addressed immediately. An architect should recognize
such concerns for what they are and allow them to be presented to the team. Typically,
when the minority side has been convinced that it has been heard and understood, it will
not object to a more popular alternative plan which satisfies the architectural vision and
project objectives.

Heuristic 3: Other developers are willing to argue the merits of the
architecture.

When this occurs, it indicates team buy-in for the system architecture. Note that if the
software architect considers himself the sole defender of the architecture and is always
the first to rise to its defense, the architect will never realize that this architectural buy-in
has occurred. Therefore, the architect should be patient and give others the opportunity to
comment when architectural issues are challenged. If the architect is exceptionally
successful, several meetings will pass where consensus is reached in accordance to the
architectural principles of the project without the architect's saying anything. Of course,
when this occurs in several consecutive meetings, the architect is obligated to bring
donuts to subsequent similar meetings.

Heuristic 4: There is an implicit willingness to delegate development
issues to teams.

As the subjects of many meetings degrade in quality, fewer of the team members will
care about how many of the development issues (configuration management trees, coding
conventions, utility modules, etc.) are resolved. In such cases, it is beneficial to everyone

IT-SC 157

to delegate an issue to a group of two or three people. This group can meet independently,
come to an agreement on the issue, and present the agreed-upon solution to the
development team at a later date. In fairness, it is important that everyone agree to accept
whatever solution is agreed upon by the smaller group. Otherwise, interested parties will
not join the group in hopes of overriding the group's decision later, thereby wasting the
efforts expended by the developers who possessed the initiative to join the smaller group.

Heuristic 5: The software architecture becomes less obvious.

There is an implicit acceptance that adhering to the architectural principles has some
value, so that there is no longer any need to debate it or even talk about it except when
mentoring new developers or presenting to new stakeholders. Design and code reviews
rarely turn up areas which reflect a lack of understanding regarding the software
architecture. They may take just as long but now focus on lower-level issues, such as
variable naming, or lack of reuse.

Conversely, you know when you are not succeeding as a software architect when the
opposite of these heuristics are true—for example, if various fundamental aspects of the
architectural vision are questioned throughout the development life cycle, or achieving a
consensus on meaningful issues is increasingly more difficult to obtain. If a consensus is
developing against the architectural vision, then it is necessary to understand the
opposing arguments and discover why they are so compelling to the developers on the
team. Sometimes, gaining insight into the compelling nature of the opposing arguments
may result in modifying the architectural vision to one which can achieve buy-in from the
development team. At other times, the software architect needs to present a better case as
to why the proposed architecture is better than the available alternatives. Frequently, this
may require educating the team on technologies and industry trends which they may not
otherwise be aware of. This education process, along with everything else that is required
to achieve vision and architectural buy-in, is a prerequisite for a successful development
project and for a software architect to be successful in his/her role.

It is important to differentiate between architectural leadership and management. The
most obvious difference is that the software architect is responsible for creating and
articulating the technical vision of the development effort. Frequently, the architectural
vision is not limited to a single effort but provides a blueprint of what the organization
can accomplish in the long run. The success of the current project validates the
architectural vision and provides greater confidence that the long-term architectural
vision is achievable through similar methods. Management, on the other hand, is focused
on the success of a short-term project with limited, well-defined objectives. For example,
an architectural vision could be a component-based enterprise framework which may be
used to produce scalable applications in several domains. A manager's goal is to produce
a workflow management system for logistics in nine months with a team of twelve
developers. Similarly, a manager has to ensure that a specific set of agreements are
satisfied and often has to interact with external stakeholders to verify that what is being
produced matches their expectations. Any changes in direction, such as new requirements
or procedures, are communicated from external stakeholders to project management,
whose responsibility is to communicate the changes to the team. The architect, however,

IT-SC 158

is focused more internally and communicates why the work is meaningful and the
purpose of doing things in the prescribed manner. It is not uncommon to have the
software architect advocate taking more risk and adopting radical changes if he is
expected to produce a technically superior product without involving too many additional
resources. Management, on the other hand, tends to be more cautious and more willing to
repeat technical approaches which have been successful in the past rather than gamble on
state-of-the-art techniques. All but the most routine of software development efforts
require both a software architect and a project manager.

5.5 Conclusions

The software architect has a unique leadership role in the software development effort.
The architect educates the development team on technical issues when time permits, sells
them on the defined vision when there isn't enough time to educate, and relies on the
cultivated trust between the architect and the team in the remaining cases. Regardless of
the method, the architect keeps the team focus on the overall technical vision and has the
difficult tasks of verifying that the team is on the same technical page based on work
products and of communicating with the team. The architect must serve as the technical
role model to team members and maintain their respect on technical issues in order to
effectively guide the project toward the desired technical goals.

5.6 Exercises

Exercise 5.1

As an architect, mentoring your team is of utmost importance. For each person on your
existing project, list the behaviors which he/she could improve upon. Afterward, write
down a list of concrete steps which you can take to help the person improve in these areas.
Develop a concrete plan specifying whom you will work with, how often, and how you
can assist each person. Finally, execute the plan. Repeat at regular intervals for the best
long-term results.

IT-SC 159

Chapter six Software Architecture: Jump
School

In the military, jump school is used to prepare soldiers for landing in enemy-occupied
terrain. Without adequate intelligence, paratrooping soldiers can find themselves in the
middle of a village dung heap, a minefield, or a camouflaged enemy camp. Similarly in
software, when the architect joins an organization or project team without adequate
intelligence information, there is no telling what they are getting into. An architect can be
doomed from the start due to existing organizational or interpersonal problems among
team members. Conversely, you may discover a team that is already well organized,
where you have the luxury of devoting the majority of your time to technical rather than
process and team-building activities. This chapter is not about intelligence gathering;
rather, it is about making the best of whatever situation you encounter when assigned as
the architect of a software development team. The information on software process and
team building will provide the tools for building an environment where the architect can
successfully transfer architectural principles throughout a team and ensure that they are
realized in the software development process.

6.1 Process

In order to have a specific software architecture produce a worthwhile design and a useful
implementation, an effective software process needs to be in place. A good software
process will detail the steps necessary to repeatedly produce a software product which
satisfies a set of requirements or a design objective. Unfortunately, many emerging
architects lack the luxury of an existing, proven software process. In such cases, it is the
responsibility of the software architect to work with the project manager in defining and
executing the software processes necessary for success.

Process Prerequisites

The process prescription described in this section is designed to meet the needs
of the middle 80% of software organizations. There are more sophisticated
guidelines for more mature organizations, for example, the Capability Maturity
Model (CMM) approach defined by the Software Engineering Institute (SEI).
An extremely dysfunctional organization—for example, one in which people are
afraid to tell the truth—is unlikely to benefit from this approach or any other.

There is an important prerequisite to the insertion of software process which is a
key challenge for many organizations. In order to effectively utilize a software
process, the organizational skill base must be sufficiently high in the areas
covered by the process to make it effective. It is much easier to adopt software
processes from a book, consultant, or product (e.g., The Unified Software
Development Process [Jacobson 99]) than to train the skill base to perform
that process. Many organizations make this mistake and struggle mightily to

IT-SC 160

overcome their capabilities shortcomings.

For example, when adopting object-oriented technologies, the development
team needs to have some knowledge and experience of the technology before
progress is feasible. First, people need to be trained to think in terms of objects.
This is a simple thing technically, but a very difficult transition for some people.
Many will never succeed in adopting the paradigm shift. Second, people need to
be trained to develop with an object-oriented programming language.
Competence in using the programming syntax is not the key training objective.
What's more important is that people use the object-oriented language properly
as an object-oriented language, and not as if they were using a language
designed for some other paradigm. It's a very common problem that causes
serious problems in object-oriented projects.

Finally, the people need experience with the new paradigm so that they apply
common sense and mature engineering judgment. The fact that you have
transitioned to objects does not mean that you can ignore common sense and
machine limitations. We have seen many designs from otherwise competent
engineers that have unwarranted levels of resources and complexity for
otherwise simple tasks. This maturity of judgment often goes beyond what you
will find documented in textbooks and courses. Instilling this practicality in the
development environment is one of the important contributions that architects
can contribute to a project. We are amazed that, a decade after the initial
popularity of object orientation, many organizations are still in the early phases
of transition and experiencing the age-old problems mentioned here.

Every military campaign is executed according to a thoughtfully crafted set of
plans. Similarly, in software architecture, a detailed plan is needed to effectively
capture requirements, produce designs which satisfy the requirements, manage
the configuration of software, and test software artifacts to ensure their quality
and consistency with the requirements and designs. Admittedly, it is frequently
easier to discuss the need for improved software processes than to establish a
plan for creating organizational processes and effectively implementing them for
a particular team or organization. However, a well-kept secret among veteran
software architects is how to create effective software processes. Before
detailing the steps in process creation, there are a few golden rules which every
software architect must know.

First, a software process which is not defined cannot be repeatable. If a process
is not written down, then there is no basis to claim whether the same steps were
truly executed according to a preconceived plan. When a team member has a
skill at executing a particular process, there is frequently a resistance to
documenting and detailing the steps executed to achieve the goal. Regardless of
where the resistance comes from, be it a fear of being replaced or a desire to
maintain control over future executions of the process, it must be overcome in
order to mature the organization to the point where benefits from an

IT-SC 161

architecture-driven approach can be realized.

Next, a software process needs to be tracked. Specifically, every software
process must have concrete, definable deliverables. For example, a quality
initiative which involves only a series of lectures cannot be considered a
process. This is not to say that lectures and seminars are bad, but rather that
without mechanisms to capture feedback and to measure how presented
information is actually applied, it will be difficult to determine the impact of
such activities. Generally, it is best to break deliverables down so that some
portion can be completed every two or three days. A longer period between
deliverables does not provide the feedback necessary to ensure that the
deliverable is satisfying expectations. Project management that waits weeks or
months for a tangible demonstration of progress is guaranteed to receive excuses
and radical misinterpretations of the original goals. Just as military leaders rely
upon continuous battlefield assessments to measure the progress of a campaign,
a software architect needs a steady stream of concrete measures of development
progress to assist project management in their frequent replanning efforts and to
quickly identify problem areas on a project.

Also, all processes must have a clear progression. Even ongoing processes
should define the progression through each cycle. For example, a defect tracking
process is typically an ongoing process in an organization supporting multiple
products with varying release dates. However, how an individual defect is
identified, documented, and resolved must be clearly specified in the process.
The consequence of failure to do so is that often a process is defined but its
execution falters or occurs sporadically, frequently resulting in a state where
outcomes are unreliable—which defeats the point of having a process at all.

A Basic Component Framework
Software Design Process

This section begins our definition of a lightweight process for component
software architecture and development. Compared to heavyweight approaches to
architecture-centered development (e.g., ODP+4), this process is much more
compatible with object-oriented approaches that your developers may already be
familiar with. If you are working with a small team of developers, and you don't
have complex distributed-systems issues to contend with, this process may be
right for your project. Architects should carry a big bag of tricks with flexible
notations and processes to meet the demands of the terrain.

Given the increasing popularity of component software, it may be beneficial to
present a single design process which is effective in coping with the unique
issues related to this emerging development approach. The assumption is that
the system being built is of reasonable complexity and spans across several

IT-SC 162

distributed heterogeneous systems.

A component-oriented design process is used to define how to implement the
requirements for a project so that reuse is maximized from existing framework
components and services, and to provide a distributed, scalable enterprise
platform for the domain model and future system extensions. The basic
approach used is a top-down design methodology which clearly defines the
software boundaries, component responsibilities, and system collaborations. In
addition, the external interfaces to COTS packages and the existing component
base are specified in the design documents.

The design process presented has three distinct stages:

• Conceptual design phase: Specifies at a high level the goals
and specific responsibilities of a component

• High-level design phase: Documents the classes, methods,
and attributes for the subsystem

Detailed design phase: Defines the precise semantics for the attributes and
methods and the IDL, which provides a well-specified transition into
implementation

Most component architectures define four architectural layers (Figure 6.1):

Figure 6.1. Layered Architecure for Distributed Component
Development

Foundation layer

Domain layer

Application layer

IT-SC 163

User interface layer

Each design falls within one of these architectural layers. The foundation layer
defines the infrastructure components used throughout the system. It contains
classes to manage database access, object-oriented querying, collections, basic
object services, and object primitives used to compose more complex objects.

The domain layer defines the components which are recognized in and are
unique to a particular domain. Components in the domain layer represent either
specific business entities or specific business processes. Typically, domain
components provide minimal, coarse-grained methods to access their underlying
data representation. This is necessary because domain components are used
throughout a particular enterprise and are typically distributed, requiring remote
access. By defining a coarse-grained interface, network latency is reduced, with
the application layer caching the information to provide a finer-grained method
of accessing information to service view components.

The application layer provides the application logic for a set of views. It
contains specializations of domain components which are tailored to perform a
precise set of tasks. The coordination of object services in the foundation layer
and domain components from the domain layer typically occurs in the
application layer. Additionally, optimizations such as caching and conversions
from domain types to user interface types occur in this architectural layer.

Finally, the user interface layer contains the user interface components that
interact with the user and the application layer to provide a complete application
from the user's standpoint.

The conceptual design focuses on high-level design issues. It defines the overall
scope of the design subsystem and the limits of the responsibilities of the
subsystem. Part of the process is to examine the requirements being addressed
from different angles to ensure that the design resolves the design issues in such
a manner as to let it be reused in other similar situations in other subsystems.
Also, the design must handle the use case scenarios naturally and smoothly
without unnecessary complexity. The deliverables for the conceptual design
stage are:

A one-sentence goal of what the design does

A list of the responsibilities of the subsystems

A clear statement of the architectural level the component is developed for

The document also gives the classes and objects initially identified for the
subsystem and a description of what the class semantics and relationships are.
This enables an early discussion on how the design satisfies a specific set of
project requirements. Specifically, the conceptual design document can be used
to discuss how the use cases in the requirements document are satisfied by the

IT-SC 164

conceptual design.

The high-level design provides the details on precisely how the classes which
make up the conceptual design are specified. The standard modeling notation in
the industry is the Unified Modeling Language (UML), and the high-level
design uses the static class diagrams to describe the static model of the classes in
the subsystem. The dynamic model is provided in UML sequence diagrams in
the detailed design stage. In the high-level design there are three key
deliverables:

Screen mockups of the component being designed

The static class diagrams

A document which provides information on the expected dependencies of the
subsystem

Specifically, the document describes how the subsystem collaborates with other
parts of the framework, what third-party tools and other components will be
used in implementing the subsystem, and also the representative use cases which
will be used in detailed design for providing detailed sequence diagrams of the
selected scenarios. The static class model provides the classes, attributes, and
methods for subsystem objects and explicitly identifies the relationships
between them. The high-level design is the absolute minimum which must be
completed before any amount of implementation can begin.

The detailed design provides the component specification for distributed
components in the system (typically in OMG IDL); sequence diagrams for one
or more use cases which are satisfied by the subsystem, either entirely or
collaboratively with other subsystems; and detailed prose descriptions of the
precise semantics of all attributes, methods, and data structures for the
subsystem classes. The interface specification also includes the possible
exceptions for a component, and the prose details when they occur and how they
will be handled.

The sequence diagrams illustrate a use case scenario by tracing through the
object model and showing by what method signatures are invoked and on what
classes in order to satisfy the use case. An explanation of how system data is
produced and what transformations are performed by libraries and nonobject
portions of the system is also provided.

The combination of the conceptual, high-level, and detailed designs forms the
design document deliverable for a subsystem. Together, the document contains
the conceptual overview for the subsystem, detailed UML diagrams of the
classes, screen mockups, sequence diagrams showing system dynamics, and a
detailed prose description of the semantics of each of the subsystem
components.

The component development methodology incorporates a concurrent design

IT-SC 165

process where each of the subsystems is designed and managed by its own
design process. The subsystems with the fewest dependencies are designed and
implemented first, with subsystems with a higher number of dependencies being
designed later. This provides the ability to stage the design process (Figure
6.2) so that concrete incremental progress can be validated with both design
and software deliverables. In addition, the components which support the
greatest amount of dependencies benefit from more iteration, creating a more
robust, reliable platform for application components.

Figure 6.2. Component Development Methodology Facilitates
Concurrent Design of Subsystems

In Appendix B, a set of design templates defining the deliverables for this
process and a sample set of designs documented according to the templates are
provided.

Finally, process deliverables must be defined well enough to establish clear
expectations as to what the document will contain and how it will be presented.
Specifying how a process deliverable is to be presented is a recurring weak point
for many processes, the predictable result being that the process deliverables
vary significantly depending on the people executing the process or on other
inconsistent factors.

IT-SC 166

6.2 Creating New Processes

Specifically, the detailed process for creating processes is defined as follows:

1. Define the goals of the process explicitly. There should never
be any doubt about what a particular process is expected to accomplish.

2. Explain the current organizational context, which
illustrates why a process is needed. This provides a basis for later
discussing whether the process is still needed when an organization changes.

3. List a brief outline of the process, which covers the
process steps and how the process progresses. Each step in
the process should have a concrete completion point. Even ongoing tasks should
have some well-defined completion point, for example, a single cycle. The steps
of the process should provide measurable progress toward the completion of a
process deliverable.

4. Make sure the process deliverables and timetable are
explicitly stated. Ideally, the specifications for the deliverables include
how the product is to be formatted as well as the information it contains.

Next, it is important to know when it is necessary to define a new process. There are two
key indicators: (1) a major disruption or problem occurred which could have been
prevented if a process was in place, or (2) an opportunity exists for improved outcomes if
a process is put in place. So either a new process prevents or eliminates bad outcomes, or
it creates desirable outcomes or improves existing outcomes.

Finally, maintain a high standard for how a process is defined. Processes which are vague,
open-ended, and do not satisfy or exceed the criteria listed above for a process will create
a false sense of security in an organization and will ultimately waste valuable time and
resources, as critical process elements are endlessly debated and redefined.

In a brand-new software development effort, an architect should ensure that processes
exist for at least the standard stages of the software development process, i.e.,
requirements, design, configuration management, testing, etc. Over time, processes will
need to be created to improve software quality, including a code review process, defect
tracking process, etc. Again, it may not be the role of the architect to define and execute
all of these processes; however, he does have the responsibility of ensuring they are in
place and sufficient for the project needs. Without these processes, it will be extremely
difficult for the architect to have a direct input on how the software architecture is
realized in the designs and actual implementation.

For development environments where existing processes are in place, new processes are
developed to solve particular recurring problems. It is critical that the existing context,
which determines the need for the process as well as the process details, is communicated
to those affected by the process. In addition to developing buy-in, it allows process
participants to provide critical feedback either into how the process can be improved or

IT-SC 167

on other issues which also need to be addressed to effectively accomplish the process
goals.

A common mistake of a novice software architect is to assume responsibility for tracking
too many of the various processes required for the project to be successful. While there
are times when a software architect needs to assume some process execution duties, a
more effective approach is to delegate the majority of such responsibilities to the project
manager or other members of the development team. The architect's responsibility is to
ensure that the processes are being tracked and that the software artifacts (design models,
documentation, code, etc.) are in accordance with the guidelines and heuristics dictated
by the software architecture. Properly done, documenting how to make architectural
tradeoffs and verifying that the artifacts are in compliance will dominate the bulk of the
software architect's schedule. It is the time-consuming process execution which
frequently overwhelms novice architects and impedes their effectiveness in controlling
the architectural consistency throughout a project.

6.3 Teamwork

One frustrating aspect of becoming a system architect is realizing that you probably could
not build a large software system entirely by yourself in a reasonable time frame. And
even if you could, you probably could never convince an organization that allowing you
to do so is in its best interest. Therefore, it is nearly inevitable that you will have to
interact with a team of individuals in order to design and develop software.

It is difficult to create a well-designed system without an understanding of the domain
model which the system supports. The key elements of a well-described domain model
follow.

Domain Model Requirements

1. A discussion of the domain business problem the domain
model supports and the context in which it provides
meaningful solutions. The domain business problem should not refer to
software constructs but to the objectives of the business and various users of the
system. For example, in banking, a business problem would state that a customer
uses a bank to save money, write checks against funds in the accounts, borrow
funds at an agreed-upon interest rate, and transfer funds between accounts.

2. A discussion of the domain business objects which
comprise the model and the relationships between
them. For example, a banking system would define the types of accounts
supported, the relationships between the accounts, the business rules governing
account ownership, and how funds may be transferred between accounts.

3. The business processes which the system either
automates or facilitates. The business process definitions must
include the purpose of the process, the specific inputs and outputs of the business
process, and any records or side effects produced. For example, it may not be

IT-SC 168

possible for the system to perform a higher-level task such as analysis. However,
it may facilitate analysis by executing algorithms, which are a single step in the
analysis, and presenting the intermediate results to the analyst. Defining the
concrete steps and decision points by which an analyst performs the business
function of analysis allows a design to accommodate automation without
depriving the user of the control and configuration needed to achieve the desired
results.

4. A discussion of the various roles which the system
supports and how the roles are acquired and released in
various scenarios. Each role should be clearly defined with a concrete
and limited set of responsibilities. For example, a bank may define the roles of
teller, office manager, loan officer, and customer. Even if the customer may want
the appearance of creating a new account, the domain model may require the
system to play the role of a teller or office manager in order to complete the
transaction rather than have the customer assume a new role.

5. A discussion of the various ways information is organized
in a domain. For example, in banking there may be an employee
organization starting with the board of trustees and bank president and ending
with the security guards. Another organization may be the staffing arrangement
on a typical day with M number of tellers, N number of guards, X number of
account managers, etc. Yet another way to classify the organization may be with
respect to signature authority. Having information about the various classification
schemes used in the domain provides a basis for later abstractions. Frequently, the
abstractions are frozen prematurely, and the precise domain classifications, which
justify the design abstractions and modularization of functionality, are lost.

An important role of software architects on a team is to ensure that the highest-quality
software can be delivered within a certain set of constraints. Even in the face of intense
time constraints, the role of an architect includes an awareness that compromising too
much on software quality will eventually extend the time to delivery rather than shorten it.
Knowing your role on a development team is essential, both for maintaining personal
focus, for team confidence, and for demanding essential concessions (time, tools,
expertise) from other stakeholders who may possess different agendas, for example,
marketing departments, human resources, etc.

Unfortunately, the word quality has become greatly abused throughout corporate
America, and especially in the software development industry. For an emerging architect,
leading a team in developing software, quality involves adhering to basic principles. A
key principle is to avoid rework of existing code. This is most effective when a second
principle is followed: strive to reduce the amount of code required overall to accomplish
the system objectives. For any two designs which accomplish identical functionality, the
minimal design which leads to the simplest implementation is preferable. This does not
mean the simplest design is always preferable, as frequently a small design means the
problem has been overabstracted and a large amount of significant implementation details

IT-SC 169

are undocumented. Obtaining a feel for the complexity of the implementation is crucial to
really understanding the true simplicity of a proposed solution.

Just as the software architect has a well-defined role on a development team, there are a
few other roles which must be satisfied by individuals other than the software architect. A
project manager is necessary to fulfill the vital and time-consuming tasks of tracking the
progress of the development effort and providing updates, both to the higher-level
stakeholders and to the development team who evaluate progress against their
predetermined goals. As new information arrives which affects the schedule, the project
manager solicits information for replanning and updates the involved parties.
Additionally, there will be team members who will be responsible for executing one or
more individual software processes. For example, there may be a build manager who
ensures that configuration management is actively used and that the software can be built
regularly. Someone else may be responsible for code versions or bringing new team
members up to speed and arranging mentors. A requirements analyst may be tasked with
ensuring that design and implementation tasks and deliverables are traceable back to
stated or derived requirements.

Under some rare circumstances, an architect is given the opportunity to assemble a new
development team from scratch. When this occurs, recognize and appreciate what a rare
opportunity you possess and resolve to make the most of it. Although team formation is
usually a management function, the architect often plays an influential role. Obtain a big-
picture view of what the project entails and identify the processes and skill sets required
to be successful. Don't allow the team to become too unbalanced in a specific skill. For
example, most software applications require fairly sophisticated interactive user
interfaces, which may be difficult to achieve with a team of relational database experts. A
good mix is desired not only for their ability to perform their specialty but more
importantly to provide a unique viewpoint and to educate fellow team members about the
benefits and limitations of their technical areas. In choosing the size for a team, keep it
small. If the work requires a team of more than 5 people, create subteams, with the
understanding that the subteam structure exists primarily to make communication
manageable. Enforce this by ensuring that team leader selection is based on their ability
to effectively communicate with team members and the architect, rather than on purely
technical skills or experience.

Even in the case where the architect is assigned to a team, the same guidelines on team
balance and team size apply. It does not matter how many people a team has if the right
mix of skills and experience is not already present on the team. In the past, training and
time allocated to get team members up to speed on a particular skill set was sufficient.
However, with the radical decrease in development cycle times, many companies hire
people having the skills demanded by a particular project, either as new employees or
consultants, rather than train existing staff. In such cases, failure to utilize the new
employee or consultant as a mentor to existing employees with different skill sets is a
common mistake.

Once the membership of a team is established and the development process begins, the
architect must immediately decide and communicate how design and implementation

IT-SC 170

tradeoffs will be made and what is the intended quality level of the software. This must
be decided carefully, as it is difficult and expensive to change either of these after the
project kickoff. Often, some architectural planning is useful, before team formation, in
order to guide these decisions. If performance is a top priority, then the architect should
make it clear that all design and code are expected to maximize performance over space,
maintenance, and robustness. In effect, the architect should define the design force
priorities for the team. Concepts such as design by contract and caching should be
reviewed and their existence validated in design and code reviews as well as reflected in
the test plans. If quality is a high priority, then more time needs to be allocated to review
and test processes. These tradeoffs must be documented explicitly for the team. Ideally
the guidance would be broken down into specific design and implementation heuristics
for individual developers to follow.

Starting from the project kickoff, the architect should maintain a continuous flow of
information to team members. If design by contract is used, circulate articles about its
effectiveness and how other people coped with its disadvantages. If developing a product,
provide information about comparable products or off-the-shelf solutions which may help
shorten development time. If you hear that someone is struggling with a particular design,
stop by for a chat and lend him Arthur Riel's design heuristics book, for example [Riel
96]. The architect cannot be effective by walking around and talking all the time (i.e.,
hallway management) or by hiding in an office and waiting to be called upon. Rather, his
role is to provide technical guidance, receive technical feedback (including project
deliverables), and ensure that all team members have whatever information they need to
be successful, from both internal and external information sources.

A key part of the architect's role is to maintain a continuous interest in all parts of the
project. Early in a software project, everyone's interest is high, as there are a lot of
possibilities. If the process is successful, decisions will be made which constrain the
possibilities, and as parts of the system begin to get implemented, real-world problems
are encountered affecting schedule, performance, and resource constraints. It is typical to
see interest in any effort decrease once it is actually under way. However, in the early
stages, the architect is identified as the key person who understands and decides technical
matters, At a high level, the actions of the architect and fellow team members are seen as
potentially affecting all aspects of the system. As the system is further decomposed, some
problems become more interesting than others to the architect, either due to their
complexity or because they coincide with the technical areas of personal interest. If the
architect constantly spends time on the areas of most personal interest, team members
will feel their own areas are viewed as less important. If these feelings persist, team
members in a particular subarea will tend to psychologically distance themselves from
the team as a whole. They will feel the architect and other team members do not respect
their work and will tend to focus solely on their tasks, independent of the concerns of the
system as a whole. The architect can prevent this by making a constant effort to allocate
time to all areas and to ask questions and probe into the technical challenges in all aspects
of the system. In addition to maintaining the morale of all the subteams, frequently the
knowledge gained provides a better holistic view of the system and opportunities for
synergy which would not otherwise be apparent. Furthermore, the architect is setting an
example of the kind of cross fertilization high-performance teams demand. When

IT-SC 171

possible, have regular meetings where all team leaders are allowed to voice concerns and
get feedback on looming technical challenges. Ensure that everyone fully understands
how each subgroup contributes to the overall project objectives. Be prepared to ask
specific questions to draw out crucial status information, if subteam leaders are reluctant
or decline to provide sufficiently detailed information.

In most projects, there are a few critical dependencies whose prompt completion is
essential for other tasks to proceed. As an architect, frequently one or more of these tasks
are either already on your desk or well on their way to your desk. It is vitally important
that critical dependencies are recognized and that steps are taken to minimize the external
factors which hinder their completion. Frequently, such tasks include senior developers
who are also solicited to mentor other less experienced developers. Working with the
project manager, the architect must intervene to protect people working on critical tasks
by temporarily suspending or reassigning routine responsibilities and to ensure that
enough quality time is spent bringing critical tasks to completion. Few things are as
detrimental to a schedule as having several teams unable to proceed because they need
the results of a team that is behind schedule, especially when the slippage occurs from
doing important work, but not work as important as removing the dependency.

Most software development teams work best with a flexible work environment. Most
professionals in the industry are honest enough that, given a chance to arrive later at work
by an hour or two when no morning meetings are scheduled, they will diligently work the
same amount of time or more later to compensate. However, this is not always the case,
and major team morale problems arise when benefits such as flexible work hours are
abused. No leader, architect, or manager should tolerate repeated and blatant abuse of
flexible work policies. If someone claims to work excessive time in the evenings, then it
is reasonable to expect tangible results from the time spent, especially given the lower
frequency of interruptions and office distractions. The team members should be judged
on their results, and when the results do not measure up to the expectations of the team,
either the project manager or the architect is responsible for finding out why and ensuring
that a cooperative team environment is maintained.

Explaining Incremental Development
to Upper Management

Upper Management to Software Architect: "Hey, these UML
diagrams look different than the ones three months ago. Why do you keep
changing your architecture?"

If you are doing your job as an architect well, eventually one or more of the
stakeholders will confront you with the above statement. Keep calm; don't panic.
There are a few common misconceptions you need to quickly dispel in order to
resolve this situation. First, there is an industry confusion about the difference
between software design and architecture. In order to clarify the distinction in
the minds of people having various, and frequently less intensive, technical

IT-SC 172

backgrounds, the following real-world analogy is recommended:

"Say, do you know what Gothic architecture is? You know, with the medieval
cathedrals and intricate designs and all. What about Ionic architecture, like the
Romans used to build the Pantheon? You know, buildings with the rows of
columns and fancy murals. What about modern architecture, with the
rectangular shaped buildings and windowpanes and so on? Well, just because
you have a building's architecture, it doesn't mean you have its blueprints. You
still have to decide for each and every building how many rooms are needed,
what their dimensions are, where the doors are, and a thousand other critical
details.

"The architecture may tell you that if you need to support a ceiling, you do it
according to a particular set of guidelines. It does not tell you the precise amount
of support required or where to put the light switches. A building can be built an
infinite number of ways using the same architecture. Similarly, software
architecture does not provide a set of design blueprints. Working with a
particular software architecture will still require incremental design and
development.

"As more is known about the problem space and as new functional or derived
requirements are discovered, it is okay that designs evolve to handle new classes
or problems. However, that does not mean that the architecture is changing. In
fact, it is the presence of a good software architecture which allows individual
designs to change without causing cascading changes throughout the system. So
rather than view the changes in individual designs as a weakness in the
architecture, we either fix the processes which allow the new requirements to be
introduced in the course of actual implementation or address how a particular
subsystem was designed, rather than architected."

6.4 Conclusions

In this chapter we have introduced a lightweight component-oriented development
process which is suitable for most organizations and projects. Given that an ideal team
size is 4 developers working for 3 months, this sort of process compares favorably with
heavyweight approaches introduced elsewhere in this book, such as RM-ODP and the
Zachman Framework.

It is important to note that good software architects are very pragmatic. Our goal is to
produce a working software system that satisfies stakeholder needs. We are not in the
business of creating piles of papers or mind-numbingly extensive requirements
specifications. We recommend what's necessary and prudent to achieve the result,
avoiding unnecessary make-work whenever possible.

We usually favor lightweight approaches over heavyweight ones, but we are cognizant of
each approach, and its strengths and weaknesses. And we are equally capable of fulfilling

IT-SC 173

the system needs, regardless of methodology. We skip unnecessary steps, bypass
irrelevant viewpoints, and add those viewpoints and techniques that are appropriate, even
if they go beyond the scope of a particular framework.

6.5 Exercises

Exercise 6.1

Define a code review process for a small development team with an approximately equal
mix of experienced and inexperienced software developers. Follow the process template.

Background for Solution:

Here is one possible solution for a code review for a small development team.

Small Corp Software Inspection Process

Process Rationale:

There are several issues in the current software development process which could be
mitigated by regular code reviews. Currently, the software is sometimes unable to satisfy
all use cases or provide all of the functionality its interface would suggest. There has been
a lack of reuse of client access code, which creates several unnecessary maintenance
points for code of sometimes significant complexity. The actual naming and coding
standards differ from the corporate coding standards. Frequently, the software contains
several defects which are not discovered until integration or, in some cases, deployment.
Additionally, maintaining code has been difficult when people leave due to a lack of
comments and esoteric coding practices. For example, people introduce third-party
libraries to solve a particular problem without telling anyone or even documenting the
vendor source of the library. Regular, systematic code reviews are expected to
significantly reduce such incidences.

Process Goals:

The software inspection process has three main goals. The first is to improve software
quality. What is meant by "improve software quality?" improve in relation to what
baseline? The baseline is a process with the same timeline, but no inspection process.
Thus, the baseline consists of a process with a small amount of additional time for all the
other development activities. We expect to improve quality by discovering and correcting
inadequate comments, poor design, and errors early in the software life cycle. The second
goal is to create and disseminate recommended code solutions for solving specific,
recurring technical problems. The third goal is to facilitate maintenance and
enhancements by increasing uniformity of software styles.

Process Outline:

IT-SC 174

The software inspection process has three main phases: before the software inspection
meeting, during the meeting, and after the meeting.

Before the Meeting:

The inspection process is based on three-person round-robin teams. Figure 6.3
illustrates the concept. Teams can be self-appointed or assigned, but everyone with new
code should be on a team, and teams should change membership from one round to the
next. Each team member chooses one or more major classes to be inspected and
distributes them to each member of the team. Each member reviews the code written by
one other member before the meeting starts and brings the annotated code to the meeting
for discussion.

Figure 6.3. Three-Pearson Round-Robin Inspection

A software inspector should look for the following kinds of things. The most obvious are
errors such as failing to take account of all cases, dividing by zero, failing to check array
bounds, failing to check for null pointers, etc.

Also, make sure that the basic purpose of a class is documented and that complex code,
e.g., code involving third-party software such as Objectstore, is explained in comments.

Still another type of comment is just checking that all requirements are met and that the
code matches the documented design.

As for software style standards, e.g., indentation and naming, Eidea Labs has adopted
Scott Ambler's Java coding standards. All inspectors should be familiar with these
standards.

IT-SC 175

See http://www.ambysoft.com/javaCodingStandards.html for more
information.

During the Meeting:

Here is an example of how three-person round-robin inspection should work. Suppose
that Vick, Christy, and Zhian are on a team. First, the team decides who will review
whom. Each reviewee selects some new code that needs review and tells the reviewer
where it is. For example, Zhian reviews Vick's code, Vick reviews Christy's code, and
Christy reviews Zhian's code. Each team member brings three copies of reviewed code
with annotations including suggested improvements and highlighting of possible
problems.

The flow of the meeting will look something like this:

~40-minute review of Vick's code

Break

~40-minute review of Christy's code

Break

~40-minute review of Zhian's code

Let's keep the meetings from taking forever, and let's prevent review of one person's code
from taking up all of the time allocated for the remaining reviews. If time runs out, time
runs out. Move on to the next person's code. Take the rest offline.

During the meeting, a reviewer hands out the annotated code. The reviewee narrates
his/her code by stepping through one thread of execution in methods of a class, or
through an important thread in client code. Both of the other participants ask questions
and give suggestions. The reviewer makes sure that all his/her comments are covered.
The third person needs to watch the clock! The third person should help to keep the
meeting on track, try to resolve disputes, and take notes of cool techniques and sneaky
bugs. The group should reach consensus on changes that need to be made to code under
review, and the reviewee should record his/her own action items for those changes.

After the Meeting:

The participants of an inspection meeting are expected to produce several deliverables.
Of these, software revisions according to the meeting recommendations are the most
important. In addition, one person from the review documents the meeting with a note
containing at least the following information:

Line of code reviewed

How long the meeting lasted

Number of errors identified (no author data; missing comments not counted)

IT-SC 176

Recommended solutions to recurring problems (with code samples as appropriate)

A physical file with a copy of all annotated code and the meeting document will be
created. The files will be organized by date and the names of all participants. These files
will serve two purposes. First, they can be used to verify that participants complete
meeting action items. Second, they can be used to establish a longitudinal record for
evaluating the benefits of the software inspection process itself.

Process Deliverables:

This section provides a simple checklist of all the deliverables produced during the
process:

Annotated code (annotations from before and after the meeting) from each participant

Corrected code from each participant

Meeting document

Folder containing all of the above

Process Timetables

Single Software Inspection Timetable:

The timetable for one round of a software inspection process is as follows. Choose a team
and pass out code. Allow three or four days between everyone's receiving the code and
the meeting. The meeting should take about two hours, as mentioned above. Fixes
recommended during the review should be performed immediately. The amount of time
required for these fixes depends greatly on their nature. Redesign might take a week,
while adding comments may take only an hour. The results note should be written and
sent by close of business (COB) the following day.

Software Inspection Cycle:

From a longer-term perspective, software inspections should take place every two weeks
during the implementation phase of the life cycle. After each inspection, each participant
will require approximately one day to make changes according to action items and to
create the meeting document.

Software Inspection in the Software Development Life Cycle:

Where in the overall software development life cycle should the inspection occur? The
code should be inspected during unit test and before integration. Once code from multiple
authors has been integrated, it is far more labor intensive to isolate and correct errors. By
inspecting the code before this phase, we can eliminate many time-consuming
integration-phase problems.

References:

IT-SC 177

Abstracts of several papers on software inspection are available at these URLs:

http://www/ics.hawaii.edu/~johnson/FTR/Bib/category-metrics.html
http://www.ics.hawaii.edu/~johnson/FTR/Bib/urls.html

Software Architecture Tip: Practical
MVC Use

In Basic Training you were introduced to the MVC and Observer design
patterns. Many of the constructs in the Java language require the implementation
of one or more interfaces to use preexisting view components with a particular
data model. So what do you do when you have several different views, each of
which demands a particular data model interface implementation? See Figure
6.4 for one approach.

Figure 6.4. One Approach to Coordinating Multiple Interfaces and
Data Models

Do not create a "manager" class to coordinate the disparate models. Such an
approach is unwieldy and error-prone. Each data model would possess its own
copy of the data, and extensive code would be needed to keep the models in
sync. In addition, adding in a new representation would require changing
existing methods in order to accommodate the new data model and its classes.
Instead, consider the motivation behind the MVC design pattern: "to have a
single model which supports multiple views. The view should know about the
model but not the other views." With that in mind, Figure 6.5 presents a
cleaner, more effective approach.

Figure 6.5. Integrating Several Data Models and Views Effectively

IT-SC 178

Here you have a single model which controls all the data needed by the various
views. The model has the responsibility of implementing all required interfaces
so that they all use the single data set. Each view communicates with the single
data model implementation via its expected interface. Each inherited interface
serves as a role for the data contained by the data model. While implementing
such a large number of interfaces appears unwieldy, it is an overall better
architecture, as it lends itself well to future extension and reduces the overall
design complexity.

Exercise 6.2 Teamwork Exercises:

For each of the following two scenarios, write a brief analysis of what is motivating the
behavior of each character type and what actions can be taken to resolve the situation.
Both stereotypes are on a software development team of six people, including an architect
and project manager.

"Lone Wolf Developer": Team member has little patience for the overall team goals.
Instead he/she insists on being given a well-defined piece to develop in isolation. On
previous tasks, he or she has tended to disregard agreed-upon interfaces and has been
extremely reluctant to provide detailed designs prior to beginning implementation.
Whatever is provided before implementation is always in a state of flux, with most of the
documentation being delivered after the implementation is complete.

"Unilateral Consensus": Team member's opinion dominates the group to the point where
there are never any dissenting opinions. The team member has technical superiority and a
forceful personality. When his/her opinion on an issue is known, other options are no
longer considered.

IT-SC 179

Background for Solution:

"Lone-Wolf Developer": This person appears to lack a buy-in into the common purpose
of the team. His/her actions indicate a shirking of responsibility to the team and no belief
in mutual accountability. There is a feeling that success on his or her part is separable
from the overall success of the team. Allowing the "lone wolf" to continue destroys the
mutual trust between him/her and other team members. Infighting is inevitable when
interfaces change without warning, vital documentation is missing, and integration is
needlessly delayed by a continually changing codebase.

Regular design and code reviews are essential in ensuring that some communication
exists between lone wolves and the rest of the team. By reviewing work products that
they have a personal vested interest in, obtaining their attention is assured, and hopefully,
constructive "forced" interaction will lead to more regular informal interactions in the
future. From the management perspective, the lone-wolf tasks should be scheduled in
small increments, ideally no more than three days in length. After each task, they are
responsible for documenting their work and integrating with other people who, ideally,
work closer to the baseline. Finally, make it clear that proactive communication with
team members is the primary determinant of future responsibility. Specifically, an
individual should neither spend an inordinate amount of time stuck on a particular
problem, nor allow anyone else to spend time on problems whose solution is already
known within the team.

"Unilateral Consensus": First, talk to the expert and make it clear how much his or her
expertise is valued and considered an asset to the organization. Next, when he or she
suggests an idea, ask for the general heuristics which reinforce why the particular
approach is superior. Have either the expert or other team members document and
consolidate the design heuristics provided. Over time, the heuristics will demystify the
decision-making process of the expert and allow team members to reintroduce relevant
heuristics in future discussions with the confidence that their suggested approach is at
least valid in some circumstances.

Next, change the way meetings are conducted. Create a rule that the opinions of the less-
experienced team members are heard first. This results in two desirable outcomes. Less-
experienced team members are given a chance to establish ownership of some ideas
which will later be validated by the expert and more experienced team members. Or, and
admittedly more commonly, the more experienced members are forced to explain the
flaws in the suggested approach of less-experienced team members, which helps them
learn by starting the discussion in areas they understand rather than the "foreign ground"
of the expert. Also, by getting their ideas out first, they are more likely to defend them,
which is better than not having an opportunity to suggest them at all.

IT-SC 180

Chapter seven Communications Training

The cornerstone of any significantly large venture is communication. In the military,
establishing lines of communication between troops is the top priority. Without
communication, it is impossible to adequately allocate resources, coordinate efforts,
assess progress, or, basically, to conduct war. Similarly, a software team must
communicate throughout a software development effort or it simply cannot succeed. A
software architect must define what level of communication is required, what form the
communication takes, and how to continually assist in improving communication in order
to ensure that the development tasks proceed as expected. The architect frequently has to
decide which design problems require collaborative brainstorming and which are more
suited to a concentrated focus by one or two individuals. Frequently, the specific artifacts
of communication among team members which are shared among stakeholders are
decided by the architect. Sometimes, notes are a sufficient record of discussions, while at
other times formal specifications in UML, IDL, and other forms are required. Finally,
every architect should establish feedback mechanisms to ensure that his own technique
and approaches are improving and obtaining the desired results.

7.1 Communications Challenges

Software development is becoming increasingly complicated, requiring the participation
of many diverse people with various skill sets. Dealing with the coordination among
different groups is an ongoing factor in the military. As such, the military provides a
wealth of lessons which are equally applicable to the development of software
applications, the most important of which is how multidirectional communication is
handled. Since effective communication is required for proper coordination, it can never
be considered an optional part of the life of a software professional. Rather, constant
verification through proper communication must be a fundamental part of the overall
software development process. If it is determined that there is a breakdown, then top
priority must be given to re-establishing communications. Facilitation plays a major role
in smoothing over various personal conflicts. If necessary, communication may even
have to be forced during critical situations.

There is a substantial industry built around aiding developers in the production of
software development artifacts. There are tools for coordinating requirements and use
cases, tools for developing software design models, and tools for defining software test
plans. Each tool has its own strengths and can reduce the time it takes to produce one or
more software artifacts. If the goal of software development was the production of such
artifacts, they would be worth their kilobytes in gold. However, what sometimes gets lost
in a discussion of the merits of the latest tool is how effectively it facilitates
communication. After all, while the external deliverable is the software, the internal
deliverable is effective communication among team members to ensure everyone is
working toward a common goal.

In that context, software artifacts are a necessary, but not sufficient, element of achieving
effective communication between software developers. Regardless of the documents

IT-SC 181

being produced, they are of no value unless they are discussed with and understood by
the development team. The following two methods will help ensure that development
artifacts are not ignored on some distant bookshelf. First, all artifacts should be
reviewed by a team composed of developers from other teams. This ensures that the other
teams are aware of what is being produced throughout the organization and are on the
same page in regard to architectural principles, design heuristics, and coding standards.
Once the final review is complete, the final document is disseminated to all reviewers.
Second, all designs produced are submitted to all team leaders who are expected to be
familiar with their contents. When issues arise which are answered in the design
documents, the architect should bring it to their attention and continually remind team
leaders to stay on top of the designs of other groups. While it may be frustrating to know
that few of the team leaders are following through and truly staying current with all of the
designs, over time it will become apparent that better decisions are made on the team
level, in part due to a greater awareness of the efforts of other teams. Finally, when topics
arise which affect several teams, schedule a meeting with representatives from all
affected teams. Either have the issues solved collaboratively, or have an agreement to
utilize a solution developed by the first group that is affected by the issues. For example,
if a new requirement arises that all system logs should be exported in an XML format, the
first group which needs to produce a log will present a standard XML DTD which will be
used by the other teams for storing and viewing logging information.

7.2 Responsibility–Driven Development

The design process requires special discussion in order to promote responsibility-driven
design and development. Responsibility-driven design requires that subsystems and
components are identified and designed based on their functional responsibilities. Each
subsystem or component has a set of responsibilities which is orthogonal to every other
subsystem or component in the system. If a particular responsibility which already exists
is required by a new subsystem or component, the new component delegates the task to
an existing instance of the component or subsystem. This technique maximizes reuse and
redundancy at the expense of the typically small performance overhead of delegation.
While responsibility-driven development is already popular in many object-oriented
software development organizations, it will likely grow even further in popularity with
the advent of components and component-oriented development, which already rely upon
delegation for composing new components from existing components.

One of the design deliverables in a software development effort is the creation of a
software specification for one or more subsystems. In specification writing, it is
important to differentiate between the documentation of an interface and the
documentation of the implementation. Since the interface may be relied upon by other
subsystems, it is expected that its specification will be less likely to change than classes
utilized completely within an encapsulated subsystem.

For software development where developers are not able to remain in constant close
contact, design documents should be more akin to a specification, a more rigorous
description of a software design than those provided by some methodologies. A design

IT-SC 182

specification should clearly differentiate between the interface between subsystems and
components versus the parts which make up the internal implementation of one or more
subsystems. The purpose of a specification is to reduce, if not completely eliminate, the
effect of multiple interpretations of a design. If every design consistently defined every
subsystem to a sufficiently low level of detail, documenting each subsystem by
describing the semantics of every class, method, parameter, and data structure, then there
would be no need to have a specification, as such a design would be sufficient to resolve
any ambiguity. However, in practice, designs often vary in their quality, and the
introduction of a specification makes explicit the areas where detail is absolutely
essential—the interfaces exposed to other subsystems. Generally, it is exceptionally
beneficial to describe these interfaces in an interface specification language, such as
OMG IDL.

Having a design specification makes it easier for the architect, as there are several
heuristics which can be applied to assess whether certain tradeoffs are made appropriately.
For example, the introduction of several user-defined data types indicates a tighter
coupling between the subsystem and its clients than if more simple or systemwide data
types were used. Frequently, an architect will need to communicate ideas to parts of a
development team, and a presentation is deemed to be better suited to the time constraints
than conveying the same information through individual mentoring. While a presentation
is useful for disseminating quick and dirty guidance, it tends to be rather useless if not
supplemented with more substantial material over time. Specifically, guidance given in
presentation form without being tied to hands-on mentoring can do more harm than good,
as developers gain no additional skills and are demoralized at not meeting a higher level
of productivity. An architect should always make clear to project stakeholders what
presentations are not effective at conveying, and she should emphasize the need to
support in-depth studying from academic texts. Even more important are industry white
papers, which are frequently an excellent means of learning lower-level architectural
details of emerging technologies.

7.3 Communication Responsibilities

One of the duties of a software architect is to serve as the spokesperson of the
development team on technical matters. As such, the architect will frequently need to
prepare and present briefings to upper management and other stakeholders. Furthermore,
briefings are usually faster to create than white papers and are a good preparatory vehicle
for outlining the key concepts for future papers. In order to be effective in creating and
presenting briefings, the use of a few straightforward techniques can increase the odds of
success.

As a technical person, there is always a tendency to convey too much information on a
technical topic. Upper-level management frequently is interested only in conclusions—
summary information. Also, other technical people can already figure out the details,
once the basic idea has been successfully conveyed. First-time technical presenters nearly
always cram much more detail and information onto charts than the briefing-chart
medium can effectively handle.

IT-SC 183

In a military campaign, it is essential that information is appropriately updated as the
situation changes. This includes the verification that targets were successfully
incapacitated, the position and direction of mobile units, and the additional defensive
capabilities acquired by the enemy since the last time they were directly observed. Every
commander knows that viewed information is immediately obsolete, as several of the
campaign elements are constantly in flux. Similarly, on any software project, the status of
a development team is also changing. Initial assumptions about time lines, task
complexity, and resources will need to take advantage of new information throughout a
project's life cycle. While project management will be responsible for the replanning of
the current project plan, the architect should wisely be utilizing feedback to alter his
technical approach to the project. The issues of when to get feedback, how to get it, and
what to do with it once you have it will be addressed in considerable detail.

In some respects, acquiring feedback should be a continual part of the architect's daily
responsibilities. It has already been mentioned that in a walkthrough, the architect should
be listening for details which reflect how the project is progressing and what obstacles are
occupying the most resources. Furthermore, where time permits, cross-team reviews of
deliverables should be a part of every development process. Still, there are a few
milestones which provide special opportunities to extract useful feedback.

7.4 Handling Feedback

There is definitely a positive benefit just in the solicitation of feedback from developers.
However, unless there is evidence that provided feedback is utilized to improve process
and organizational issues, the development team will quickly become disillusioned and
much more reluctant to comment on development activities. Therefore, a plan to make
the most of feedback is vitally important to have in place in conjunction with obtaining
feedback. Feedback is generally less useful in evaluating the current performance of an
organization than in developing a strategy for future improvements in process and team
building.

Admittedly, not all feedback should be acted upon. In the highly stressful software
industry it is common for a certain amount of venting to take place. For example, if a
deadline slipped, there will always be a tendency for a few team members to look to
place blame (perhaps rightly so) on particular individuals. In such cases, feedback
provides an understanding ear to people who have an appropriate sense of urgency in
meeting the agreed-upon milestones by a particular date. However, rather than deal with
specific instances—often well after the time when action can be taken to resolve the
situation—look toward long-term patterns in people's actions and short-term steps in
process improvements.

An important realization in dealing with people on a development team is that you cannot
actually change the people you are working with. You can encourage them, flatter them,
and negotiate with them; however, ultimately they bear the responsibility for being
productive members of a development team. This is true regardless of whether you
directly supervise them, share the same level of supervision, or are in a lesser position of
authority. However, to be effective you can change yourself, how you deal with people,

IT-SC 184

and how you react to people. First and foremost, a software architect should lead by
example and demonstrate the qualities he expects others in the team to share. This
includes acknowledging that you respect that people are trying to accomplish the same
goals as you are, even if their methods are different. It may take time to listen effectively
to gain an understanding of the underlying reasons for a person's behavior. As an
architect, it is important to accept responsibility for the efforts of everyone on the team. If
the goal is shared by everyone on the team, it is illogical not to accept shared
responsibility when various problems arise. Different organizations provide the software
architect with varying degrees of authority in working with software developers. When
you have greater authority as an architect, you can be even more effective by making the
decisions which no one else on the development team is empowered to make.

7.5 Exercises

Exercise 7.1

To facilitate brainstorming, the "spitwad technique" is a practical, proven method to
generate ideas. The facilitator first passes around identical slips of blank paper. The
facilitator then reviews the discussion topic and purpose of the brainstorming session.
Next, everyone is requested to write down his or her ideas on one or more slips of paper.
Each slip of paper should contain a single idea which is relevant to the discussion topic.
Every idea should be complete and self-contained, requiring no additional information or
explanation. Each idea is wadded up into a ball and tossed into a wastebasket, a box, or,
in a pinch, a corner of the room. Ideally, the end result will be a pile of indistinguishable
wads of paper. The entire process should take about five minutes.

When everyone has finished, pass around the wads of paper evenly throughout the group.
Go around the room and have each person read his or her wads of paper aloud. After
hearing all of the ideas, gather suggestions for categories to group the various ideas into.
For each category for which there is a general consensus, have someone create a tagboard
and tape it to the wall. Next, have the group tape their paper wads to the tagboards under
the appropriate category. Every wad should be attached to a category, including
duplicates and even ideas which may seem initially to be inappropriate or already part of
the existing situation. Finally, the facilitator should proceed to each category and lead a
discussion about each of the topics. Participants can provide additional ideas or expand
upon existing ideas.

The notes from the discussion should be preserved and distributed to the meeting
participants. The information gained from the spitwad brainstorming activity can be
utilized in a future meeting devoted to evaluating the ideas and making decisions about
appropriate actions to take. The advantage of the spitwad approach is that ideas are
submitted anonymously, which allows participants to submit ideas without fear of being
judged and being held personally accountable for the merit of their ideas. Therefore, they
are more likely to contribute whatever knowledge they have on the discussion topic.

IT-SC 185

Chapter eight Software Architecture:
Intelligence Operations

Intelligence operations are knowledge-gathering procedures. Intelligence operations go
beyond basic data collection (assembling uncorrelated information) to the point of
collecting fully assimilated practical knowledge—knowledge that affects important
architectural decisions.

Gathering knowledge is an essential element of being a software architect. Ordinary
knowledge gathering for a project comprises end-user requirements capture and perhaps
some commercial product evaluation. We believe that proper architectural practices go
well beyond these project-centric traditions, which we consider to be isolationist when
used exclusively.

Instead, we would augment these practices with some additional procedures which we
have found to be effective, including architecture mining, architecture iteration, and
architectural judgment. In this chapter we define specific meanings for these phrases as
we explain their intelligence-gathering potential.

Architecture mining is a practice that breaches classic intelligence barriers between
projects. It can have an intelligence scope as large as an entire industry, or as small as one
company's systems. Architecture mining is a conscious effort to eliminate the ignorance
of silence that characterizes many system developments.

Architecture iteration is a process focused upon a single architecture or specification. It
tracks the architecture through its development and life cycle, improving quality through
intelligence gathering on each project.

Architectural judgment is a process of decision making, based upon intelligence
gathering. Making quality decisions is at the very heart of being an architect. In today's
changing world of technology, it is increasingly difficult to make long-lasting judgments
without a systematic process.

8.1 Architecture Mining

Architecture mining is rapid intelligence gathering for making better decisions. Its benefit
is intelligence amplification; it makes the architect appear smarter and more experienced.

Architecture mining should be fast and effective, or it should not be pursued. The
industry changes too quickly for any procedure to be effective which takes more than a
few days, weeks, or months, depending upon the scope of the decision. Architecture, in
its role as a planning discipline, should reduce timelines and make software
development more effective and efficient. We make this point here because architecture
mining has the potential for becoming a career-length activity, instead of a short-
turnaround intelligence amplification.

Top Down and Bottom Up

IT-SC 186

In a top-down design approach, abstract concepts are progressively transformed to
concrete designs and implementations. The highest level of abstract design might be the
system vision or its initial requirements document. In a bottom-up approach, a new
design would be created from fundamental programs or parts. Bottom-up design can be
very productive when it involves incremental change or reuse from existing designs.

We contrast top-down and bottom-up with up-front and after-the-fact. An up-front
approach would generate plans for designs before implementation commences. In an
after-the-fact approach, the project would document designs based upon the as-built
configuration.

In general, we consider software architecture to be initiated as an up-front approach.
Architecture embodies a system plan that enables estimation and efficient system
construction. Ideally, architecture is configured through a bottom-up approach called
architecture mining.

Interestingly, object-oriented approaches usually define architecture after-the-fact, as an
outcome of the detailed design process, whereas the recommended approach would create
architecture as an input to detailed design.

Architecture Farming

Most software design approaches assume that design information is invented as the
process proceeds. In a top-down process, design information is generated from
requirements, which may be represented as software analysis models. Requirements-
driven architecture design is called architecture farming. In a spiral process, design
information is invented during each iteration. As the spiral process proceeds, architects
invent new design information as they learn more about the application problem. It is fair
to say that these approaches reinvent much of their design information.

Precursor designs exist for most information systems applications and problems. These
designs are in the form of legacy systems, commercial products, standards, prototypes,
and design patterns. In my experience, it is not difficult to identify a half-dozen or more
precursor designs for any given application problem. Valuable information is buried in
preexisting designs—information that allowed earlier architects to build useful systems.
Extracting this information for use in software architectures is called architecture mining.

Architecture Mining Process

Architecture mining is a bottom-up design approach. It exploits historical design and
implementation experience to create new software architectures. Because we are relying
on successful previous designs, there is substantial risk reduction. The challenge of
software architecture mining is to discover, extract, and refine the nuggets of design
knowledge. Because there is often a great deal of implementation detail to review, the
process is analogous to mining the earth for precious metals.

IT-SC 187

Mining is a bottom-up design approach, incorporating design knowledge from working
implementations. Mining can incorporate design input from top-down design processes,
too, so that there can be both top-down traceability and bottom-up realism.

Before mining starts, it is necessary to identify a set of representative technologies that
are relevant to the design problem. Technology identification can be done by various
means, such as searching literature, interviewing experts, attending technical conferences,
and surfing the net. All available resources should be pursued.

The first mining step is to model each representative technology. Technology modeling
produces specifications of relevant software interfaces. I recommend using OMG IDL as
the interface notation because it is concise and free from implementation detail. OMG
IDL is also a good design notation for the target architecture because it is language
independent, platform neutral, and distribution transparent. By modeling everything in
the same notation, we create a good basis for design comparison and tradeoff.

In the modeling step, it is important to describe the as-built system, not the intended or
desired design. Frequently, relevant design information is not documented as software
interfaces. For example, some of the sought-after functionality only may be accessible
through the user interface. Other key design lessons may be undocumented. It is useful to
capture this design information, too.

In the second step, the mined designs are generalized to create a common interface
specification. This step entails more art than science, more architectural intuition than
meticulous engineering. The goal is to create an initial strawman specification for the
target architecture interfaces. It is usually not sufficient to generate a lowest-common-
denominator design from the representative technology. The generalized interfaces
should resemble a best-of-breed solution that captures the common functionality as well
as some unique aspects inspired by particular systems. Unique aspects should be included
when they create valuable features in the target architecture or represent areas of known
system evolution. A robust assortment of representative technologies will contain
indicators of likely areas of target system evolution.

At this point it is appropriate to factor in the top-down design information as one of the
inputs. Top-down information is usually at a much higher level of abstraction than
bottom-up information. Reconciliation of these differences involves some important
architecture tradeoffs.

The final step in the mining process is to refine the design. Refinements can be driven by
the architect's judgment, informal walkthroughs, review processes, new requirements, or
additional mining studies.

Applicability of Mining

Mining can be a fast, inexpensive process that yields significant benefits in risk reduction
and architecture quality. The real product of mining is the edification of the software

IT-SC 188

architect. With a mature understanding of the problem and previous solutions, the
software architect is well prepared to make good architectural decisions.

Other mining artifacts include the OMG IDL interface models, but they should not be
treated as formal deliverables. These artifacts are simply design notes used in the creative
process that produce good architecture.

I believe that mining should be done for most high-quality reusable designs. It is not
necessary to do mining for all designs in a system, especially the ones that impact only a
small number of developers or subsystems. It is appropriate to consider mining for high-
risk or widely used interfaces that impact significant aspects of the system or enterprise.

Given the right documentation and access to expertise, architecture mining can be done
very rapidly. In our experience, most mining studies can be completed within a few days
for each representative technology. After several mining studies, it is possible to
undertake significant designs with confidence.

Mining for Success

How does a software architect gain sufficient knowledge to design and defend a good
architecture? Knowledge can come from years of experience of designing similar
architectures. Alternatively, the learning process can be greatly accelerated by explicit
mining of design knowledge from existing technologies and experts.

In our observation, most software architectures are designed in a vacuum. It is easy to
ignore or reject preexisting designs when confronted by a new design problem, but there
are serious consequences. "Design-in-a-vacuum" invariably produces immature, custom
designs with minimal potential for reuse, interoperability, and adaptability. Because
technology transfer between multiple systems rarely occurs in practice, the positive
effects of software architecture mining can be quite dramatic.

Horizontal versus Vertical

It is essential to understand the subtle differences between horizontal and vertical design
elements. In particular, we refer to aspects of a software interface design at a system level.
At this scale of design, we are interested in managing complexity and change effectively.
Designs must be flexible, but simple and reusable, if at all possible.

An important goal of architectural design is to have a well-thought-out balance between
horizontal and vertical elements. When we say horizontal and vertical, it often confuses
people, because these essential design extremes are unfamiliar concepts to most
programmers. When referring to these extremes, we are talking about a continuum of
design choices, which vary in flexibility and reusability (on the horizontal extreme) with
its ability to solve the point-design solution (on the vertical extreme).

When we say vertical design, we mean designs that are unique to one software
implementation, unique to one system, or unique to one set of application requirements.
Vertical designs are the norm. It is likely that most of the designs that you have ever

IT-SC 189

created or encountered (except for vendor APIs) are decidedly vertical. And people
wonder why software reuse is so difficult to achieve in practice?

What makes a design vertical is the presence of specialized details which are hard-coded
into the solution. It is well known that attribute names and schemas are application
specific and vary over time in an application-dependent way. If these attributes are hard-
coded into the system APIs, then we have a vertical API. Other examples include APIs
that specify very specialized functions, or contain uniquely constrained sets of parameters.

As programmers, we favor vertical designs because they resolve the current design
problem in an obvious way. We have certain attributes and operations to implement, and
we code them in a straightforward and direct way. Why should we do it any differently?

As architects, we are concerned with additional design forces which have longer-term
impact. From experience, we know that requirements change frequently. We know that
certain ways of designing can support change more flexibly than other ways of designing.
We could do a rational approach to change management that lists the likely sources of
change and their design impacts. One such approach is called the Software Architecture
Assessment Method [Bass 98]. These methods address coarse-grain issues of change. But
as architects, we can make hundreds of fine-grain decisions that accommodate for change,
as we proceed with design. The rationale for these fine-grain decisions could be called
our architectural intuition (or the art of architecting). However, we also want to balance
our quest for flexibility with practicality.

Can a Design Be Too Flexible?

In a nutshell, YES. It's easy to make designs that are too flexible for their own
good. Proper architecting is all about common sense and balanced design. When
designing system-level interfaces, we certainly don't want to hard-code vertical
design details that we expect to change overnight. On the other hand, we
certainly don't want to propose a design so flexible that it has flexibility disease.
The potential consequences of making a design too flexible include:

• Inefficiency. Highly flexible designs require extra runtime
processing on both sides of an interface. For example, parameter
encodings for flexibility may require application-programmed
translations from native types to dynamic self-identifying types. In a
distributed system, additional marshalling time may be required for
dynamic parameters. These inefficiencies can lengthen interface
processing latencies by two orders of magnitude or more. Inefficiency
will be the most frequent complaint that you encounter when attempting
to insert some architecture qualities into a design. In most cases, you
should resist this argument. Over-optimization is a source of many
unnecessary architectural compromises.

• Lack of Understandability. Another thing you will notice
when the designs are too flexible is that your developers won't

IT-SC 190

understand the flexible features. Some developers will tell you this
directly; others will ask questions (that you will have a hard time
answering). But the most dangerous response is when developers don't
understand, yet go ahead and make assumptions and use the features in
ways that you had not intended. We view lack of understandability as a
primary limiting force on design flexibility. You should make your
designs flexible, but only up to the practical limit of how easy to
understand the designs will be for your developers. That includes the
likelihood of developers misusing the designs due to lack of
understanding (which is also a failure to communicate on your part as
the architect).

• Extra Coding. Flexible designs do require extra software on both
sides of the flexible interface. If you look at this extra code, you will
notice that it often hard-codes exactly what you had intended to make
flexible in your design. For example, passing a set of dynamic attributes
could be hard-coded as a fixed set of attributes for each usage of the
interface. This situation is normal, since some part of the implementation
must do data- handling operations; hard-coding is the most direct way to
do it. The benefit of flexibility is that the attribute set is not hard-coded
into the architecture, and attribute sets may vary without architectural
modifications.

• Extra Documented Conventions. A key price of flexibility
is the need to constrain usage through conventions. Without usage
constraints it is often impossible to achieve interoperability between
implementations, no matter how carefully specified the interface is. A
design may be too flexible when the usage conventions become
cumbersome or may even outweigh the original specification. There is
an important design balance in trading off implementation details
between hard-coded architecture and usage conventions.

A vertical design often has many potentially negative consequences. Vertical elements
are tied to application-specific requirements. And we know that requirements are always
subject to change or reinterpretation. Vertical designs are unique to one implementation
and embody the antithesis of reusability. Vertical designs are often complex, containing
many application-specific details. In that sense, it is difficult to manage complexity
effectively in a vertical design.

Horizontal Design Elements

Horizontal design represents the common requirements from more than one application.
One way to describe horizontal design is that it is the design that remains after the
vertical elements are removed or refactored. The elimination of the vertical design
elements is an explicit intellectual exercise practiced by software architects. If you take a
design and remove or refactor vertical elements into horizontal elements, then the

IT-SC 191

remaining design often addresses the needs of multiple applications; hence it is horizontal
by definition.

One formalized approach to vertical design elimination is called domain engineering.
Domain engineering is the systematic management of reusability. It starts with domain
analysis. Typically, domain analysis begins with a set of application requirements
[Rogers 97]. The requirements are sorted into groups representing various application
functions. Functions that are judged more horizontal (e.g., common to multiple
applications) are selected for rewriting. These requirements are rewritten iteratively to
remove application-specificity, while still retaining their domain functionality. The
rewritten requirements are checked with domain experts to ensure that they retain their
value to the domain.

Software design begins after the requirements are domain-analyzed. The horizontal
requirements are used to define software interfaces in an application-independent manner.
Several software authorities claim that domain analysis helps programmers to design
much higher-quality interfaces [Rogers 97] [Coplien 99]—in particular, much more
adaptable and reusable, and subjectively better structured.

We believe this observation is due much more to the experiential process than to the
artifacts. The process of domain analysis not only yields the deliverable of horizontal
requirements, it also gives the software designer new insight and perspective about the
design problem. This new knowledge is an invaluable resource for creating high-quality
designs.

It is important to note that domain analysis is an exercise that helps designers
differentiate between horizontal and vertical design elements in a given problem domain.
Another such exercise is architecture mining. In both cases, the knowledge gained by the
analyst is more important to the design process than the artifacts (e.g., documents)
generated by the domain analysis or architecture mining process.

Good horizontal designs meet the requirements of multiple applications. Logically that
should be very hard to achieve in practice. However, in a perverse sense, horizontal
design is easier to do than vertical design. In a famous result from a mathematics
educator, George Polya claims that solving more difficult, generalized problems is often
easier than solving specific problems (i.e., solving vertical specializations) [Polya 71]. In
other words, solving a more general (harder) problem is often easier in practice. This
result is called Polya's Paradox. We believe that this result applies to software design, as
well.

One reason why Polya's Paradox works is that specialized problems are often
overwhelmed by details. Because a specialized problem refers to one concrete instance,
we can extract as much detail as desired from the real-world situation. This excess
information itself becomes a problem for the designer. In the more generalized problem,
we are freed from addressing the details of any single situation, except as an example
from which we can easily discriminate the relevant and irrelevant details.

IT-SC 192

In the abstract world of the generalized problem, we can define the solution structure in a
most advantageous way. This new solution structure is relatively easy to formulate at the
abstract level, unburdened by details. When we apply this solution to specific cases, the
generalized solution defines the underlying principles for the specialized solution. And
we can resolve any similar specific problem with these same principles. In effect, we
have defined a reusable solution.

In software, the situation is often not so clearcut. It is possible to have mixtures of
horizontal and vertical solutions. Whether we have a good or bad structure depends upon
how these elements are intertwined. For example, the vertical qualities of an API are not
diminished if it contains intermixed horizontal design elements. In fact, intermixing of
vertical and horizontal design elements is the norm, and the design problem for the
architect or programmer is to separate these elements from each other. If horizontal
design elements are properly separated (for example, in a separate interface), then it is
possible to intermix these design elements (e.g., through inheritance) in a controlled way
that does not compromise the inherent advantages of separation.

In many instances, the differentiation between what is vertical and what is horizontal is
an intuitive, subjective judgment. We believe that the ability to distinguish between these
extremes is an important and essential ability of software architects. An important design
choice (e.g., between horizontal and vertical) for an architect may be invisible or
unimportant to programmers on the project. And that's okay. That is one of the reasons
why we believe that software architects are different from programmers. The ability to
clearly see these distinctions and know why they are important is an important indicator
of the architecture instinct.

What about Traceability?

Internal and external designs are different views of the system. It is relatively easy to
prove traceability for vertical designs, because the details correlate closely with external
requirements. As we refactor a design into its horizontal form, the traceability becomes
less obvious. A horizontal design (of an interface architecture) represents the internal
structure of a software system. The internal structure is different and separate from the
external requirements. The relationship between the two can be shown only indirectly, at
best. When a design comprises horizontal elements, the dichotomy between internal and
external views can be extreme.

One approach to show how the internal design supports the external requirements is
through scenarios. Each scenario is the performance of an externally significant function,
expressed as a thread of execution through multiple layers of the system. In effect, the
internal design is exercised in direct response to the execution of an externally
meaningful function. Typically, each horizontal design element will be involved in
multiple scenarios, indicating that the design is traceable to many external requirements,
but not any individual requirement that solely justifies its design.

Designing for Future Applications

IT-SC 193

Horizontal designs resolve problems across a range of applications. For a horizontal
design to be effective, it must meet the potentially conflicting requirements of several
independent applications. The horizontal design must satisfy not only current application
needs, but also future application needs whose requirements have yet to be specified. But
how can we address future, unknown requirements?

The apparent ability to predict future features of systems is a strength of the architecture
mining approach. This phenomenon is easiest to understand in terms of commercial
software, if we consider that in any given commercial software market there are a number
of competing products with differentiated features. For example, the software market
includes word processing and geographic information systems (GIS).

There is a common functionality across all products in the market, but there are also key
differences that make each competitive. For example, one word processor has great
layout abilities, and another has great graphics extensions. As the market evolves, each
product will tend to be extended in ways that have proven successful in competing
product lines.

This same phenomenon of product differentiation occurs much more dramatically in
other situations. For example, in geographic information systems, the product
differentiation is so successful that most large companies need multiple vendors' GIS
systems to meet their needs.

Because information about commercial products is readily available, it is difficult for
competitors to hide anything significant about their products. Competitors monitor each
other's products and customers to keep in touch with current conditions and future market
directions. With custom in-house software systems, information is less readily available.

In our experience with architecture mining, every legacy system implemented some
unique and advanced capability that surprised us in comparison with other known
systems. Legacy systems within the same functional area have unique capabilities (that
was probably why they were developed in the first place), and all of these capabilities are
quite different. It was clear that if the legacy owners were aware of all these capabilities,
then they would want a new system that embodied most of them. In effect, study of
legacy capabilities showed us the future best-of-breed for custom systems.

In a limited sense, a future software system is a best-of-breed display of successful
features in current software systems. Of course, we can factor in some untested features
supporting novel requirements which may or may not become successful. One can
predict, with some success, how future system features will evolve, given a study of
system differences today, and how well these product differences are thriving in today's
market.

8.2 Architecture Iteration

Architecture iteration relies upon intelligence gathering during a project. Whether, how,
and when to change an architecture are some of the most important decisions for a

IT-SC 194

software architect. An architecture is a plan, and it is said that no plan survives first
contact with the enemy. The enemies in this case are change and ignorance. As software
architects, we want our decisions to be flexible enough to survive changes. But according
to Alistair Cockburn, we don't know what we don't know [Cockburn 98]. Ignorance is the
more dangerous enemy. What we don't know can change our architectural assumptions to
the breaking point. This intelligence operation is intended to defeat these enemies
through the preplanned strategy of architecture iteration.

Architects can be very insulated from the realities of software development. The most
active time for any architect is at the start of a project. During this time, the architect is
free to envision the system without much concern for downstream constraints. Early in
the project, an enticing vision is often preferable, both to impress the funding sources
(e.g., with apparent progress) and to attract potential staff to the project.

We would urge restraint at this stage for several reasons. First, on average, software
projects are over budget by 184% by the time of delivery [Johnson 95], and the systems
seldom deliver what was expected. Overestimation of what is feasible is one of the most
common failings of up-front estimators, among which architects are key participants.
Second, it's more important for projects to prove credibility through demonstrated results,
rather than paper plans, known in a derogatory sense as "slideware" or "viewgraph
engineering" [Brown 98]. It is important to help projects to identify what is feasible for
early demonstration and delivery. Rather than to define "the big vision" for what the
system could potentially become in an unconstrained-budget environment, it is important
to architect for reasonable implementation costs and long life-cycle maintenance.

Software Process Background

The two traditional types of software processes are waterfall and iterative. Waterfall
process is a sequence of steps, such as "analyze requirements," "design," "code," and
"test," which are of long duration and are scheduled only once during the software project.
It is widely accepted that waterfall process does not work for software development in
most organizations.

Waterfall fails because of change and the nature of software development. A waterfall
process is unable to effectively respond to changes, because changes often require rework
in earlier parts of the process. Rework would require violation of process and scheduling
constraints. So the project continues ever onward in denial of changes that may cause it to
deliver the wrong system. The nature of software development is chaotic. Software
projects are products of one or more minds. Communication and miscommunication
between people have chaotic effects upon our ability to assess progress and quality. As
these things we don't know are discovered, responsiveness, rework, and redirection are
often required.

Iterative process reuses the waterfall sequence, but makes each step much shorter and the
whole sequence repetitive. The steps are shortened because the scope of the problem
addressed in each step is greatly reduced. The sequence is repeated so that the efforts can
be redirected in response to changes and discoveries. Iterative process is sometimes

IT-SC 195

called risk-driven development, because in each iteration of analyze-design-code-test
there is a feedback assessment (perhaps with user input), and a new plan can be
formulated for the next iteration in response to what is learned. Each iteration is an
opportunity to rework elements of each process step in accordance with lessons learned.

A key variation of the iterative process model is the iterative-incremental process.
Incremental processes focus on specific functions of a system, one at a time, not all
system functions at once, as may be the case in waterfall and pure iterative processes. For
example, an increment may focus on prototyping selected screens. This would be called
an external increment, because it is focused on the externally observable behavior of the
system. In another example, an increment might focus on building a data access layer, an
API for transparent retrieval and update of multiple databases. This would be called an
internal increment, because it is focused on internal functionality that is not directly
observable to end users.

In an iterative-incremental process, particular functions are selected in sequence for
incremental development. Each increment becomes an iteration of the process. The goal
of iterative-incremental process is to complete an entire function in an increment, so that
it will not require rework downstream in the process. This means that the analysis, design,
coding, and testing of that one function must be exhaustive enough to reduce or eliminate
the need for later rework.

Iterative-incremental process is a widely accepted approach to software development.
Some authorities have called it a "spiral" process, because each iteration increases the
scope of developed software, and builds upon the results of previous iterations. Planning
a spiral process is one of the most important functions of project management. The
balance and sequence of project iterations are critical to project survival, balancing
factors such as progress, risk reduction, and upper management support.

External iterations are critical to demonstrating progress (for management support) and
usability risk reduction (i.e., making sure we are building the right system). However,
external increments usually require throw-away coding, since certain internal functions
that have not been implemented must be simulated. In contrast, the objective of internal
increments is finished code that can be used throughout development and the system life
cycle. In general, the most cost-effective way to build a system starts with internal
increments. There are often stronger motivations to perform external increments early in
the project.

The Role of Architecture Process

Software architecture helps the project manager in planning increments, because the
architect breaks up the system into well-thought-out functions—for example, subsystems
and system use cases. The process for software architecture is only one of the tasks in the
overall software development process. Much of the software architecture activity takes
place early in the project; thus, software architecting comprises early project iterations.

IT-SC 196

Spiral processes are intended to be quite flexible when applied. How much depth and
how often each step is applied can vary from iteration to iteration. Also the length of
iterations can and should vary. Software architecture requires this flexibility to be applied
sensibly. Ideally, iterations are longer at the beginning of a project. These initial iterations
can be called "architecture iterations" because the principal deliverables are architecture
artifacts (e.g., higher-level systemwide technical plans).

Generally, the first two iterations are the longest and are applied to architectural planning.
A total of three to six months for these iterations is not unreasonable, although as little as
two to four weeks is commonplace.

Explicit architecture planning has some distinct benefits in software process. First, the
architecture iterations do not require an entire project team. Hordes of programmers are
unnecessary during the architecture iterations. In fact, adding programmers too early in
the project can lead to much dissension and wasted labor expenditures. Many
programmers resent having to participate in lengthy requirements analyses and
architecture processes. As might be expected, many programmers would rather be
designing and coding hands-on. Also, it is difficult to creatively design in groups larger
than 5 people. So, ideal architecture teams are kept small, as are ideal programming
teams, with 4 people for 3 months being the most effective size and task duration for
development.

A key benefit of architecture is planning the partition of large systems developments into
smaller subprojects. As you might expect, our ideal goal would be to form subprojects for
about 4 people working for 3 months. Architecture can plan the partitions and define the
boundaries between these subprojects. The most detailed partitioning of boundaries is in
the form of software interface definitions, i.e., computational architectures. As such,
architecture planning makes the whole software process more efficient.

During the architecture phases, commitments can be minimized. For example, it is not
necessary to purchase a lot of equipment or software licenses for a small, short-duration
architecture team. Any expensive licenses that are required (e.g., for assessing software
technologies) could be demonstrator or evaluation versions. The project can also save on
labor costs by using a small team during these initial phases.

Architecture planning defers commitment of resources until they are needed. Once the
development phase starts, it can be accelerated, because the development effort and many
crucial technical decisions are preplanned by the architecture team. A desirable
partitioning ratio between architecture planning, development, and deployment is 2:1:1—
in other words, half of the project for planning, one quarter for "doing" (i.e., software
development and testing), and one quarter for training and deployment. This is a classic
result from general project management, which has been applied successfully to software
projects. We would consider this as a "goal," not a hard and fast rule. In a sense, once
development starts, it continues throughout the software system life cycle, with about
70% of the expenditures occurring after the completion of the formal development
project, during operations and maintenance.

IT-SC 197

Development of a maintainable system is one of architecture's key benefits. In our
opinion, architecture planning is essential for achieving higher-level qualities such as
maintainability, reliability, extensibility, and others. Many of these qualities are directly
or indirectly linked to system complexity. It may be simple common sense, but excess
system complexity makes it difficult and expensive in virtually every respect. For
example, complex systems are hard to document, develop, test, maintain, debug, and so
forth. Architects understand that a system must be as simple as possible, but not too
simple (i.e., simplistic). Most systems can be architected in a much simpler way than
developers would normally assume.

In any problem there is an inherent complexity, but there is an even greater complexity in
solutions (assuming that the solutions work). The necessary complexity in the solution is
due to the inherent complexity in the problem. The excess complexity in the solution
(beyond the inherent complexity) varies greatly. From experience, most excess
complexity derives from a lack of design coordination. Excess complexity can be a
natural result of uncoordinated designs, particularly at the system level of software scale.
Knowing this, architects can manage and minimize the excess complexity.

Architecture by Delegation

The good old days of software promulgated a practice that continues today.
Software architecture was and is often designed by delegation. To architect by
delegation, a manager identifies candidate subsystems and then delegates the
details of interface specification to individual developers. The number of
subsystems selected is usually based upon the number of programmers. Six
programmers equals six subsystems, four programmers equals four subsystems,
and so forth. Having the preexisting structure of the software organization drive
the technical solution is a dubious practice, but what happens next is even
worse. In order to define subsystem interfaces, programmers engage in pairwise
negotiations to define the software interfaces. Since all the interface decisions
are decentralized, the process inevitably leads to unique interfaces, also called
an "order N by N" solution. The interfaces are unique to each implementation,
and unique to each system.

The tragedy of architecture by delegation is that architecture qualities of design
are seen as desirable by developers, but virtually always are sacrificed to
expedience. Commonality of interfaces is viewed as a desirable objective, but is
seldom pursued in practice. Management of complexity is not a significant issue
if you have face-to-face technical support from fellow programmers, and the
ability to change things whenever agreeable.

Architecture planning enables organizational decisions to be made after their
consequences are clearly understood. A classic problem for software projects involves
mismatches between the technical requirements of the solution and the preexisting
structure of the human organization. Once the human organization is established for a

IT-SC 198

project, with ownership for specific architectural partitions, it is most difficult to change.
It is even worse when the architecture is ill-defined, because technical decisions are
equivalent to political decisions. It is very undesirable when political compromises
become the most important drivers in the design of the system. Doing architecture, up-
front, with a small team, allows management to establish the proper organizational
structure, one that does not conflict with technical imperatives.

From a management perspective, architecture is a useful planning activity because it
defines the solution in sufficient detail to provide a dramatically improved basis for
project planning. While estimation methods (e.g., function points) are capable of
forecasting project costs, these methods cannot define an architecture for the solution.
Estimation methods cannot indicate how the system is configured, how to organize the
project team, or how to decompose the project. Architecture planning can.

The Macro Process: Architecture Iteration

Architecture iteration is a process for quality improvement in project/system architecture.
The process spans the entire system life cycle. In this description of architecture iteration,
we will assume that extensive review and feedback are applied at every step in which the
project makes an important selection. Once the architects are willing to make a
commitment, the information value is lost if it is not reviewed, validated, or confirmed
through consensus of peers, developers, or other system stakeholders.

Typically, a software project begins with an informal vision, or an inspiration that may be
the result of a creative discussion, or someone's bright idea. This occurs long before the
project is a formal project. We could call this Architecture Iteration 0.1 (we will refer to
the version and iteration synonymously here). This vision is then documented in some
form that sells the concept to the system stakeholders (Iteration 0.2). As a result, time or
money becomes available to pursue the vision. In follow-on iterations, projects diverge
greatly, depending upon industry, participants, and corporate culture. In this case, we
assume that an architecture planning activity occurs next.

After Iteration 0.2, the architecture planning proceeds through requirements analysis and
architecture specification, followed by architecture prototyping. During the paper
planning phase of architecture specification, any number of design alternatives can be
considered. Ten iterations of paper design is not atypical. The architect (or architecture
team) is seeking the best solution. And they cannot effectively evaluate solutions without
committing them to paper or software for criticism.

Design concepts can (and should) vary widely. For example, designs that are highly
vertical should be attempted, as well as designs that are broadly horizontal, and hybrids
of the two extremes. At the paper stage of design, commitment to any specific design is
inconsequential; therefore, bizarre ideas should be explored in order to discover their
potential benefits, if any.

IT-SC 199

Having gathered the best ideas, from paper design studies, architecture mining, and other
intelligence, the architects select the final design. We can call this Iteration 0.9. In the
architects' judgment, it represents the best design candidate for realization.

An architecture prototyping activity is appropriate at this point. Its purpose is to validate
the key design decisions, in particular the dynamic behavior of the solution. The
architecture prototype is a simulation of the system, with all architectural boundaries
implemented, but with the internals of the subsystems stubbed out (e.g., throwaway code).

Lessons learned from the architecture prototype are incorporated into the final iteration of
the architecture phase, which we can call Iteration 1.0. It produces a paper specification
and architecture prototype representing the best design that the architects can produce
(with respect to paper studies and simulation), without actually building the system.

The publication of Architecture Iteration 1.0 is an important project milestone, and the
most critical milestone for software architects. At this point, the architecture is transferred
to the development teams for detailed design and construction (i.e., iterative incremental
development). As the conceptual basis for the entire software project, the architecture
should be stabilized or frozen, while this detailed work proceeds. The architecture
represents the key assumptions of the project. Changes in key assumptions can have dire
consequences. The architecture also represents the boundaries of the project, both internal
and external. If these boundaries are unstable, much negotiation or worry-mongering may
result. The architects work with project management to reduce these negative
consequences through architecture stabilization.

The keys to stabilization include (1) doing your homework during the architecture
iterations, and (2) sticking together, including architects, management, and lead
developers. The team is ill-prepared for Iteration 1.0 if its members can't defend their
architecture when facing simple and complex questions.

During the development iterations, the architecture team is available to communicate the
design. The architects can answer developer questions and interpret designs. The
architects should not try to micromanage the internals of each subsystem's design, but
simply reinforce the larger-scale boundaries defined by the architecture through well-
articulated explanations.

At the same time, the architects are beginning their intelligence collection for Iteration
2.0. As people ask questions and raise concerns, architects should take notes. Any
immediate change to the architecture is unwarranted because the experiment is just
beginning. It is important to respond with good judgment and not to react in a reflexive
manner.

Developer Reaction to Architecture

As the developers near completion of their first prototype, the result of a major
development iteration, the architecture team begins active intelligence collection,
preparing for the next iteration of the architecture. We can categorize what the architects

IT-SC 200

observe in terms of three developer reactions: (1) implementation as planned, (2)
misunderstanding, and (3) defect workaround.

When the system is designed on paper, the architects envision various design benefits.
These benefits are unproven until they provide advantages to developers in practice.
When the architects inspect the implementation, and it appears to be implemented as
planned, that is evidence that the design benefits have been realized. In order for this to
happen, the architecture vision and design must be communicated and understood, then
implemented, and the design must be technically sound. Evidence of implementation as
planned is confirmation of adequate communications and design soundness.

What happens in practice is that some parts of the design are implemented as planned,
and other parts in unexpected ways. Each design element has an intended purpose that
defines how it should be used by developers. However, architectural intentions do not
always match implementation reality. The three developer reactions apply to each and
every architectural decision that affects their work. The architect needs to inspect the
designs carefully in order to discover the developer reactions. This involves
conversations with developers as well as inspection of software and subsidiary design
documentation.

We emphasize that it is not the architects' role to be judgmental. During this discovery
phase, the architects should be neutral fact finders, using informal discussions and casual
reviews to collect their information. This is not the time to enforce architectural decisions;
rather it is the time to rediscover the architectural reality, having been through the cycle
of design and development.

When the design is not implemented as planned, there are two alternative reasons: there
was a misunderstanding of the architecture, or there is a real design defect. The architect
must decide which is which. In a misunderstanding, a sound design was implemented in a
creative way by the development. The developer could have done what was achieved by
using the architecture as planned, but didn't. The developer proceeded to implement the
design in a discretionary way that exploited other elements of the design to achieve the
same purpose.

As professionals, we make the assumption that everybody in our work environment is
trustworthy and has good intentions with respect to architecture and implementation. If
possible, we also make the competent engineer assumption, that all of the
developers are sufficiently educated and competent to understand and implement a
properly articulated architecture. We know that the competent engineer assumption does
not always apply in many of today's programming shops, so we can work with
management to make necessary adjustments to project policies and procedures.
Architecture is particularly valuable in this respect, in that it provides technical guidance
to the developers that eliminates much guesswork. We can supplement that architectural
benefit with training and mentoring.

Using effective management practices, we never jump to the conclusion that developers
have bad intentions. When there is a misunderstanding, we always assume that further

IT-SC 201

explanation is needed (perhaps in the form of additional education and training). In this
sense, a misunderstanding is a failure of the management and architecture team to
communicate the design effectively. Procedures for architectural release and rollout
should be modified. For example, if there is a consistently misunderstood part of the
design, spending more time communicating that part of the design is warranted in the
next iteration.

As our primary architectural communication mechanism, we favor the one-day
architecture seminar. This is a lecture-tutorial format which is not a review. This should
be emphasized to the audience, because there is an implicit assumption in many
development cultures that every meeting is some form of review. In this one-day seminar,
the architecture is explained by the architects, section by section and level by level. In our
experience, a written document, alone, cannot be an effective means of coordinating
implementations without some form of face-to-face explanation. In other words, the
stand-up tutorial imparts some missing element of communication that cannot be
effectively replaced by architectural documentation.

At first impression, this missing communication factor appears mysterious. What the
stand-up tutorial imparts, that no document can, is the architects' commitment to the
system design, in every important detail. Through a stand-up tutorial, the architect can
make the system vision understood and much more believable. In addition, the architect
can quickly explain rationale for design details that no amount of documentation can
replace. In a perverse sense, architectural rationale can be nearly unlimited. Design
decisions can be based on long experience or on design insights gained through lengthy
studies. You can attempt to explain these experiences at length, but the real knowledge
can be gained only by experiential learning.

It is possible, as a last resort, that the design has a flaw which must be changed. Flaws
and defects can come in many forms and for many reasons. They can be mistakes,
oversights, ignorance, and so forth. Many such defects are unpredictable and are
discovered and remedied only through experience. As architects, it is our last resort to
change the design. Design changes have consequences. A change may fix a certain
problem locally, but may cause many other problems and hardships for the project. For
example, a significant change to a system-level API used by a dozen applications would
involve substantial reprogramming. Sometimes such changes are necessary if there are
great technical advantages to the new design.

After Intelligence, Iterate the Design

The architects have learned much during the initial paper design process. They have
gained additional insights during architectural prototyping, but the real test of the
architecture occurs during development and testing of engineering prototypes and
production releases. At every step, the architects strive to improve the quality of the
design; they use the lessons learned to make the design better and better. Since quality is
the satisfaction of human needs, architects are continually working toward a design that
will realize the most stable balance of design features supporting a quality solution
addressing the stakeholders' needs.

IT-SC 202

In terms of our architectural iteration process, at the end of architecture iteration 1.0, we
froze the architecture design during development iteration 1.0. Near the end of the
development iteration we collected substantial intelligence about how the architecture
was implemented. Any changes to the architecture must be inserted during the transition
from development iterations 1.0 to 2.0. The key idea of architecture iteration is to keep
the architecture stable during development, changing it only at discrete times
synchronized with work-stopping transitions in the development process.

The architecture activity is vigorous near the beginning and end of major development
iterations, where most developers will work on finishing and stabilizing the current
release, before branching off and building the next major release of the code. It is the
intention of architects to catch the train of the next major release, without derailing the
project through ill-timed architecture fluctuations.

Changes are made to the architecture through a decision process called architecture
concentration. Through our intelligence gathering we know about design comments,
criticisms, and actual usage. Each of these inputs to the process comprises an
architectural design force. The design forces are balanced by the architect through
improved communications or design changes. Many forces are required before a design
change is justified. If we are too responsive to forces, design changes will be frequent and
violent. This is the opposite of the stable environment that architects are attempting to
create. If the architect does not respond to emerging design forces, it creates an equally
indefensible situation. So the architects find balance between these extremes by using the
architecture iteration process. In other words, there will be changes to the architecture, at
discrete times, according to the project plan. Any inputs received are considered
intelligence for the next architectural iteration.

In the architecture concentration process, many forces are resolved by each change. The
appropriate analogy is "killing two birds with one stone." The influences of several
design forces are combined to cause a single change to the design that addresses the
needs. The architect must distinguish between what is needed and what is desired. The
provision for "what is needed" must be satisfied, but the provision for "what is desired"
should be considered with moderation. Also, it is important to realize that the explanation
of the revised architecture can be as important as design changes. In other words, how the
features of the architecture are explained is a way of resolving forces, which is often
more effective than direct technical changes.

Architecture iteration works like a critical damping factor. If we are too responsive, the
architecture changes too rapidly and does not converge for a long time. If we are too
stubborn to be responsive, the architecture also takes much longer to converge, perhaps
after our dismissal. We want to play our role in the project so that the architecture
converges as rapidly as possible, but without much oscillation, which is over-
responsiveness to change.

As architects it is our mission to ensure that the system converges on a high-quality
design, at least for design decisions having systemwide impact. And if we truly believe in
the principle of encapsulation as promoted by OO and component paradigms, that's all
we should really care about, because any internal design defects (outside of the architect's

IT-SC 203

control) are isolated within subsystems. Quality convergence is a goal unique to
architects, because it is seldom seen as a priority by developers (who are focused on
coding issues) or management (who are focused on short-term results). However, we
know that architecture quality will contribute significantly to the ease of coding and the
delivery of short-term project results, as well as the longer-term issues of usability,
extensibility, and maintenance.

The Micro Process: Architecture with Subprojects

The core process of architecture iteration is called architecture with subprojects.
Because architecture planning partitions the problem into subsystems with stable
boundaries, it is possible to design and develop these subsystems as subprojects in
relative isolation. By relative isolation we mean that the subprojects may be
conducted concurrently or in a distributed organization, with relatively minimal need for
intersubsystem coordination (assuming that the architecture "does its job").

We can describe architecture with subprojects as a viewpoint on the overall process of
system development as follows:

1. Identify subsystems. A key result of the architecture planning activity
is the designation of a stable of subsystems. Each subsystem has high cohesion
(functional connectivity) but minimal coupling to the other subsystems. In
addition to its technical role, each subsystem has a correspondence to the human
organization for the project. For example, on small projects each subsystem may
denote the scope of responsibilities for a single development. Alternatively, with a
high ratio of subsystems to developers, each subsystem may correspond to one of
several significant responsibilities of each developer. On larger projects, a
subsystem is usually assigned to a team of developers.

2. Define subsystem interfaces. Subsystem interfaces are the concrete
definition of boundaries between parts of the architecture. Proper isolation
between subsystems (and the groups implementing them) cannot be achieved
unless this part of the design is well coordinated across the system (i.e., managed
by architects). It is not always possible to completely define and stabilize
interfaces during the architecture planning phase, but these interfaces should at
least be considered as a part of the architecture. On large projects and distributed
developments, preplanning the subsystem interfaces is more necessary than on
smaller projects.

3. Project planning. The designated subsystems form the basis for
development team organization, project planning, and cost estimation. Project
planning is most effective given a reasonable technical plan as a starting point.
Project planning can determine how the existing human organization can be
mapped onto the desired architecture, perhaps through redrawing boundaries in
the human organization for the purposes of the project.

4. Subprojects in parallel. With the project plan and the architecture plan
well defined, individual subprojects can be spawned to realize parts of the

IT-SC 204

architecture. Ideally, the subproject partititioning is closely matched to the
partititioning of the technical architecture. As the parallel subprojects complete
their deliverables, they need to synchronize at various points in order to test
interoperation across system boundaries. Internally, each subproject conducts an
iterative incremental development process. The subproject iterations do not need
to be synchronized, except at major iterations involving systemwide integration.
A subproject can have several internal iterations for each major iteration that
involves other subsystems.

From-Scratch Designs versus Smart
Architecting

The practice of architecture involves some engineering, some psychology, some
art, and a great deal of intuitive judgment. However, we believe that architecture
is not magic. When designing a new system, it is insufficient to "throw
something together" and expect to generate good design. When starting on a
new design, the worst approach is to give all the developers a blank sheet of
paper (or analogous situation) and ask them to design from their own knowledge
of the problem under a tight deadline. Almost as bad is an approach where the
architecture team tries the same thing. We call this situation designing in a
vacuum, because there is no intelligence gathering. In contrast to other fields
of endeavor, a software architect has no particular advantage over ordinary
developers when designing in a vacuum.

We can overcome the limitations of designing in a vacuum in several ways. One
approach that we described at length is architecture mining. Architecture mining
gives the architect substantial, detailed information about how to design similar
systems effectively. It also conveys a sense of perspective, beyond experience
with a sole implementation. Another approach is domain analysis, where a set of
requirements is iterated, with user involvement, from a disorganized jumble into
distinct horizontal and vertical elements. In both cases, the experience of domain
analysis is more valuable than the artifacts generated, because it trains the
architect to think about the problem and realize the advantages of increased
intelligence and vicarious experience.

Architecting in Chaos

Architecture attempts to bring some additional technical order to the chaotic process of
software development. Development can appear chaotic because of apparent changes in
the environment of the project. It is the strong desire of software management to give
their sponsors what they want—and what they want can change as frequently as the wind
direction. In addition, a software project is a learning experience, in which business
requirements and real-world constraints are discovered during the project, not during
initial requirements elaboration.

IT-SC 205

The technical environment is also changing; innovations that occur during a project can
motivate changes in technical plans. As commercial technologies increasingly address the
vertical needs of industry, it becomes easier for external marketeers to impact
organizational decisions about software. For example, we have seen extremely well-
planned projects completely change direction and technologies, almost overnight,
because of vendor influence.

Software design models are inherently intolerant to change. Design models are crafted
with respect to certain assumptions, and an emphasis on what's important and what's not.
When changes in fundamental assumptions occur, the models are invalidated because
their hard-wired assumptions no longer hold true. Most projects find this acceptable. It is
a very common failing to deny that invalid models are indeed invalidated. Instead,
projects pretend to make progress with broken models, which become progressively more
corrupted.

Another source of chaos is in the software process itself. It is devilishly hard to assess
software progress, especially by word of mouth. A common joke in the software
profession is that the software is always 85% done. Of course it is, and the last 15% can
easily add another 90% to the development time and budget. As the truth emerges about
software progress there are many surprises, including many pitfalls and unknowns and
necessary reworks that impact the project's schedule and direction.

Architects are not the primary responsibility holders when it comes to controlling chaos;
that is properly the role of management. However, architects are a de facto part of the
management team and can influence management decision making. Architects are
responsible for eliminating as much technology-driven chaos as possible, and for
mitigating chaotic conditions in other areas touched by architecture, such as enterprise
architecture models. Architects should use their influence with management to make
suggestions about how to handle important situations that they may have encountered on
previous projects. In addition, architects work with management to affect decisions,
solutions, and policies that moderate chaos.

Architecture iteration is a primary approach for dealing with chaos, from the software
architect's perspective. Some additional strategies that should be used with architecture
iteration for dealing with chaos include:

1. Frequent sampling. Having frequent and regular meetings can give the
project a way to identify and cope with chaotic change. One can address the
challenge of change through the frequency of sampling, including regular
meetings, perhaps daily. In this approach, the way to keep ahead of change is to
keep an eye on it. There is an emerging methodology based on this theory called
Scrum, in which the project has stand-up team meetings on a daily basis [Rising
00].

2. Managed environment. Knowing the potentially devastating
consequences of change on a project, management can help a great deal to control
the timing and impacts of change. Architecture iteration supports this principle, in
which the impacts of architecture change are infrequent, and always crafted to

IT-SC 206

reduce the possibility of future change. Management can control the
dissemination of changes in several ways. First and most important is what
management says to the development team. If management parrots and amplifies
every known source of change, it becomes the source of chaos. Alternatively,
management can limit its comments to those which have necessary impact on the
project. An important part of the architect's job is to assess the technical
consequences of changes. Management and architects can work together to
process change inputs and formulate plans and messages for dissemination to the
project staff. Traditionally, management had control of organizational
communications; everything was communicated through the chain of command.
Today, email has changed that situation a great deal, allowing people to
communicate across all organization boundaries and levels at the push of a button.
Management should encourage the staff to come to them for decisions regarding
change inputs. In addition, management should enforce old-fashioned chain-of-
command rules regarding changes requested by other persons and organizations.

3. Short projects. You can minimize the effects of change by keeping the
project's duration within one year. The shorter the better. The rationale for this
guideline particularly addresses changes in the technology environment. Over the
course of a year, major technology changes can occur, but complete obsolescence
of the existing technology base is unlikely. Over two years, that assumption may
not hold. This challenge is especially apparent through the burning-in of year
numbers in product names, such as Rational Rose 98 and Microsoft Office 97.
There is an inherent 12-month planned obsolescence built into these product
images. And the human-interpreted images often are much more influential than
the real-world technological consequences of obsolescence.

4. Low commitment planning and fast execution. Ideally, an
enterprise should have many architectures in planning stages, but few
development projects. During the architecture phase, the commitments are very
low: a few people for a few months with free-evaluation software. Architecture
plans can be changed without much trepidation. Once programming begins, there
is usually a larger commitment of resources: many programmers, much
equipment, purchased software, and so forth. The commitment to particular
decisions increases as code is written. Whereas changes during the architecture
phase are easily accommodated, changes during the development phase can be
expensive, often resulting in cancelled or unsuccessful projects. Executing the
low-commitment approach, development phases are no longer than 6 months, and
architecture phases can be as long as 3 to 6 months. The architecture phase
defines a project plan and technical design that make it possible to develop the
system rapidly.

8.3 Architecture Judgment

All architecture benefits depend upon a critical assumption: that architecture
decisions are fundamentally sound and will not be subject to significant
change. If architecture decisions are no better (or even worse) than chance, then it

IT-SC 207

would be appropriate to conduct a software project without architectural planning. In
particular, this is why the quality of judgment of the architect is vital. Architecture is all
about making important technical decisions for a system or project. By definition, the
scope of architecture comprises the important decisions, also known as "architecturally
significant" decisions.

How do architects use judgment? Judgment guides our advice to project management and
developers. Judgment is used in the evaluation and selection of technologies. Judgment is
used in the definition of a "system vision," including the envisioning of architectural
frameworks that are detailed to realize the design. Judgment is used in virtually every
detail of architecting—for example, designing subsystem interfaces, elaborating
enterprise requirements, and allocating engineering objects. We rely on judgment in
many cases, because more logical engineering methods are not available or are
inapplicable to many intuition-based architecture decisions.

A key role of the architect is to assess the impacts of changes in requirements and
technologies. This is a proper role for architecture judgment, because the architect must
assess whether these changes impact "the architecture," which also means "affect
important system decisions and assumptions." With a systemwide view, the architect is in
the best position to make such judgments. The architect should also rely upon specialists
to provide answers about specific technologies, as inputs to a decision.

Judgment is the application of the intuitive aspects of architecture. When we say
"intuitive," we do not imply impulsitivity and ad hoc guesswork. Usually the architect's
judgment is backed up by intelligence gathering and experience, as well as systematic
decision-making processes. It is infeasible to justify every decision in writing, so we
attribute much of what we do to intuitive judgment. Even if we could document all of our
decisions, we cannot recreate all of our experiences for the reader, so that he draws the
exact same conclusions as our own intuitive judgments. It is essential to have our
management and developers trust our judgment in order to be effective architects. We
usually do this by enlisting one or more of the lead developers into the architecture
decision-making process.

Problem Solving

Architectural judgment is one form of problem solving. If we consider problem solving
as a paradigm, we can argue that it fits many human activities. We can map the problem-
solving paradigm upon most project activities, including what we do in meetings and
day-to-day on the job. In order to be good problem solvers, we believe we should use a
problem-solving process for important decisions.

Some alternatives to problem solving include: ad hoc decisions, "whoever yells the
loudest," management by caveat, and flipping a coin. Sometimes these are expedient
approaches; sometimes it is more important to move on to the next topic, rather than
dwell on an inconsequential decision.

IT-SC 208

To establish a process, we first define the problem-solving paradigm as a reference model.
The general problem-solving paradigm is to first decide upon the question to be
addressed, then identify alternative solutions, elaborate the alternatives, select among
them, and implement the solution [VanGundy 88]. At each step we have decisions to
make about which process to utilize, and which content alternative to select. Considering
each of the generic problem-solving steps, we have the basis for a problem-solving
process:

1. Identify the Question. The first step is to define the problem. What
questions should we answer in order to resolve the situation? The search for the
right question can be a miniature problem-solving exercise in itself. In the case of
architecture, the questions may be broad and complex, as are the solutions. In a
meeting situation, one of the best ways to identify the question is to write down
some candidate question (on a flipchart or whiteboard) and let the group edit it
through discussion.

2. Identify Alternative Solutions. The second step is to discover
several potential solutions. In a perfect world it would be nice to identify all
possible solutions, but this is seldom feasible (or desirable) in practice. We want
to find a reasonable number of candidate solutions that are all worth investigating
further. Sometimes if there are many potential solutions, it is useful to redefine
the problem or to downselect the alternatives before detailed study.

3. Elaborate the Alternative Solutions. Each alternative can be
studied further—for example, by detailing the steps involved in implementing that
solution. Simply creating a written description of the proposed solutions is a
major step toward reducing ambiguity. In this step, we want to share information
about the proposed solution, in order to make a more informed decision. In many
cases, it is necessary to "make up" information about a solution—for example, by
providing a strawman definition of a plan of implementation.

4. Select among the Alternatives. Given the sufficiently elaborated
alternatives, the studies are done and it is time to make a decision. Decision
making itself can be a drawn-out process, or it can be a simple choice among
obvious tradeoffs. By understanding the more complete decision-making
processes, we can effectively simplify with known consequences. In particular,
decision analysis is a process based upon a matrix (also called "Olympic scoring")
[Kepner 81]. The alternatives are listed in columns, and decision criteria are listed
in rows. The criteria are in two categories: the essentials and the desirables. The
desirables are sorted by priority. Note that we need a problem-solving process to
select criteria. The alternatives are scored in rank order: 1, 2, 3, Then the
scores are tabulated with respect to priority weightings, and the best score wins.
The full decision analysis process is considerably more rational and objective than
ad hoc decision making. The winner is usually a good choice, and we have a
rationale for explaining why in the form of the decision matrix.

5. Implement the Solution. Once we have selected a particular solution,
we can elaborate the design and implementation plan for that solution and realize

IT-SC 209

the results. Having made a sound decision and eliminated consideration of many
unnecessary options makes the implementation step much more focused.

Sometimes the powers that be will disagree with a carefully rationalized decision. One
way to explain this mismatch is that the decision criteria have different priorities than the
real-world priorities. It is an interesting spreadsheet exercise to revisit the decision
analysis and discover the likely priorities.

In any decision-making process, the ability to prioritize is essential. It is not productive to
view each choice as an exclusive selection, because that arbitrarily excludes desirable
choices. Instead, it is preferable to prioritize among options or among criteria in order to
rank-order the alternatives or considerations. One of the most effective ways to prioritize
is to use situation analysis, essentially scoring each option by its seriousness, urgency,
and growth in importance as high/medium/low, and ranking the results [Kepner 81]. This
prioritization process can be used with arbitrary lists of ad hoc concerns. It is not always
necessary to rank equal items, and you should not insist on perfection before considering
rank ordering. What is important is to determine what is most important, and then focus
energies on exploring those alternatives. All this advice can be summarized in the saying
"First things first and second things never." Determining what's first (i.e., most important)
and what's second is done through a process of prioritization.

Review and Inspection

In some organizational cultures, every meeting is a review. Review is an important
process, but it tends to be overused and overestimated. Any time you have more than six
people, the meeting is by default a virtual review. With six or more people (and typical
meeting processes), it is very difficult to design and proceed creatively. However, it is
relatively easy to get sidetracked on discussions.

What's wrong with the review process is that its results are uneven. At its best, it helps to
form consensus for good ideas. At its worst, it is a pernicious form of group-think, where
everybody concedes to the boss's wishes. Most likely, the review process will focus on
issues that are not the most important. And some people with long meeting experience
can manipulate the review process by exploiting its weaknesses. One macabre review
game is to search for the question that can't be answered (e.g., "What about security?"). It
does not have to be the most important question, or even a significant one. Groups are
easily led in such a direction, even though it may be irrelevant to the accomplishment of
the group's purpose.

We have seen too many review meetings where every idea is pooh-poohed (criticized).
This often happens when multiple competing interests are present, such as competing
software companies. One interesting process, used by Sun's JDBC team, is to bring one
company in at a time, instead of the more typical multicompany meetings. Without the
pressure of imminent competition, the companies were more willing to share their
technical opinions and help with the creative process.

IT-SC 210

One firm-and-fast rule that we insist upon in review meetings is that we shouldn't
redesign on-the-spot. Technical design decisions should be considered carefully, off-line,
and not become the victims of group-think. Untold numbers of bad design decisions are
made in review meetings, for spurious reasons. Each review comment is considered to be
a design force which must be balanced with other forces in order to make a reasonable
choice. Often, many design forces are resolved with single changes, or the solution can
be explained in terms of the current design, and how it can be used more effectively.

Also, it is important to clearly define which meetings really are review meetings and
which are not. For example, a tutorial is not a review meeting. In some cases, we meet to
disseminate completed specifications. We must switch from review mode sometimes in
order to stabilize work, distinguishing which decisions are closed and which are open for
choice. Otherwise, every decision is up for reconsideration at virtually every meeting.

There is another, more structured, version of review called software inspection [Gilb 93].
We do not claim to describe the process completely here; suffice it to say that this is a
process that is very effective. Some experts claim that software inspection "always
works."

Instead of an unstructured review, software inspection is a highly structured process.
Proper inspection requires a list of quality criteria as well as a basis document (e.g.,
requirements) with which to compare the designs. Inspection differs primarily from
review in that it involves a closer examination. Forty-five minutes per page is not
uncommon in an inspection process. The inspections are performed off-line, outside
meetings. At inspection meetings, the potential defects are collected as efficiently as
possible from the inspection team members. No document can enter the inspection
process without meeting certain quality criteria beforehand. These entry criteria are
assessed by the inspection leader, a key role in this process.

Inspection can be used at any phase of software development. It is most effective while
reviewing written specifications and architectures, although it has been used for code
review.

8.4 Conclusions

In this chapter we covered several intelligence-gathering techniques that can improve our
architecture practices and probability of system success. One of the most important
lessons learned is to consider architecture as a deliverable. In the opinions of
some software authorities, architecture is the most important deliverable of the project.
We tend to agree; however, we seldom brag about this openly, especially in the presence
of developers. The truth is that everybody's contribution to the software project is vitally
important, but not all are equally important. Each person can provide a positive or
negative contribution to the project's outcome. For example, negative contributions can
result from exacerbating chaotic project inputs, rumor mongering, and unwarranted
dissension. Architecture is helpful for moderating the chaos of a project but is not the
only or most effective means for doing so.

IT-SC 211

The intelligence-gathering process is interleaved with other architecture processes. For
example, we freeze architecture during active code development and gather intelligence
near the logical end of each phase. Intelligence is applied to make architectural decisions
when and where they can cause the least disruption and most benefit. One of the benefits
of intelligence gathering most difficult to achieve is the definition of stable interfaces that
maintain system qualities throughout their life cycles. Stable interfaces are required for
system-level architecture, distributed computing, and component-based development.

8.5 Exercises

Exercise 8.1

Work with a peer or manager who is very familiar with the organizational systems.
Identify the focus of the study, such as: "We want to find a way to exchange accounting
information between our systems for monthly and yearly reporting" or "We want our
customer service representatives to access information and post transactions across as
many lines of business as possible." Then make a list of the systems, standards,
prototypes, and products you already know about that are relevant to the problem. Check
the Internet, too. Sort this list in terms of the importance of each system for the business
and problem resolution. You are done; you have a plan for architecture mining. The next
steps would be to track these resources down (leverage the knowledge of managers) and
set up some 2- to 3-hour appointments with their one or two architects to walk through
their interface specifications and/or schemas, depending on the problem.

Background for Solution:

Maybe we chose the wrong name for this process, but architecture mining is a quick and
lightweight procedure, compared to what most people expect. You can plan a mining
mission in an hour or less (e.g., this exercise) with the right pair of people in the room.
Over a 2-week period, you can complete this mission. And your architectural knowledge
will be increased immeasurably.

There is no deliverable from architecture mining; it's all about making architects smart.
Pick the best-of-breed of the ideas you gather, and you are well on your way to
specifying a quality architectural solution to a problem that is vitally important to your
business organization. We can't recommend an easier or faster way to get these kinds of
results. We know many groups of architects who have spent years trying to find the
answers that architecture mining easily delivers within a couple of weeks.

Architecture mining has a second important benefit: it cross pollinates information
between projects, creating technology transfers that are otherwise organizationally
impossible. The SunSoft people who created Java Database Connectivity (JDBC) used a
similar process. They met one-on-one with contributing organizations, eliminating
competitive worries that larger multiorganizational meetings would surely trigger.

Exercise 8.2

IT-SC 212

Using your organization's current software process, how would you synchronize the
architecture iterations to minimize fluctuations in architecture during development tasks?
How would you coordinate architecture changes between iterations? On large projects,
will this architecture coordination benefit from synchronization with management
communications/meetings, or should architecture coordination be an entirely separate
process?

Background for Solution:

The key concept of architecture iteration is to keep the architecture stable when the code
is changing, and vice versa. Stabilizing the architecture during coding yields significant
benefits. It eliminates much developer confusion. It reduces the wasted time spent on
system discovery (estimated to consume up to half of the developer's time). It enables
programmers and groups of programmers to work in parallel and in distributed
laboratories.

Exercise 8.3

List the elements of your organization's design process and the resulting design elements.
How would each element and step be characterized with respect to engineering procedure
versus architectural judgment? In the execution of judgment, how is the judgment
rationalized and/or documented? How could each judgment be re-evaluated at a later time?
Who is responsible for defending key judgments when changes occur?

Background for Solution:

Software engineering has suffered from physics envy. Ideally, every process step could
be decomposed into rational engineering analysis techniques. Analogies such as
automobile manufacturing have been applied to software process, with disappointing
results. There is an intuitive level of decision making which is often discounted and
buried in software engineering processes. In this age of software architecture
enlightenment, we are making these issues explicit and assigning responsibility to
architects to manage these intuitive forces. To make the incredible transition from
unstructured natural language requirements to a brutally logical binary machine, we must,
at a minimum, insert some intermediate steps, in order to minimize risk. This is the role
of software architecture, in addition to system planning, which maps the intuitive forces
in rationalized steps into the logical abyss of machine code. Architectural judgment is
vital to this transition, whether explicit or implicit in the software process.

IT-SC 213

Chapter nine Software Architecture:
Psychological Warfare

In psychological warfare, we use the term grounding to mean a state of quiet
confidence. Grounding comes from knowing "how things happen." And usually, you gain
knowledge of how things happen through experience, including making mistakes, trial,
and error.

9.1 Alternative Learning

There is another way to learn (rather than making mistakes), and that is through learning
from other people. In order to do that effectively, you need two skills that most people
lack: how to read between the lines how to take advice. A famous technical editor said,
"People don't read," meaning that it's very rare to find someone who's really done his/her
homework, reading technical publications and so forth. It is equally true that people don't
listen to advice. Including you. Us, too. We all have to try harder to do these basics more
effectively. They seem really simple, but most people don't acquire these basic skills in
much depth, and therefore waste a great deal of time and energy by not benefiting from
the knowledge of others.

The phrase "reading between the lines" is only a figure of speech. You don't literally read
anything between lines of text. What you do is analyze what the author is saying at a
level of detail somewhat beyond the surface discussion. To do this you need to use your
knowledge, experience, and imagination.

Suppose you are reading a story about human experiences. Try to imagine how those
people were feeling and acting that motivated what they did. Were they lazy, angry,
ignorant, misinformed, or biased? Now read an article by a vendor or consultant. Is the
writer competent to speak and act on this subject? Does he have an agenda, perhaps
product or standards centric, and is he trying too hard to persuade you? How does what
he is saying compare to your own experience and knowledge? Is he right or wrong or
somewhere in between? When did he write this, and what was the historical context of
these comments?

These are impressions that you should be able to pick up naturally while you read.
Reading between the lines gives you the ability to discriminate what you will add to your
knowledge, and what you will reject. Every piece has some good and some bad
information. To win the psychological war, you need to know the difference, almost
instinctively.

9.2 Internal Control

When a friend comes up with bright ideas, it's human nature to try to talk them out of it,
because (psychologists say) we are trying to help them avoid being discouraged. We are
helping them avoid discouragement by discouraging them verbally. Makes no sense, but

IT-SC 214

most of us engage in this behavior unconsciously. It's natural. In order to change our
behavior, we first observe "how things happen."

Similarly, taking advice is not natural. It just seems obvious that any mature adult knows
how to take advice. But we don't. Not naturally. Normally, we all think that we know
what we are doing. And that we can handle the situation with the force of our own will.
In a sense, we mistakenly assume that we can control the world, even when we are in a
brand-new situation where we don't have a clue "how things happen."

We use the term brain in gear to mean that you achieved a deep state of understanding
(about a set of related topics), so that you can articulate your points very persuasively. A
trial lawyer works hard to achieve the state of being in gear.

9.3 Expectation Management

Expectation management is one of the most powerful weapons in psychological warfare.
In expectation management, we take our instinctual need to discourage other people's
ideas, and we use the technique consciously, regarding our own ideas as we present them
to other people.

The concept is simple. If you tell someone that your idea will deliver wonderful benefits,
and it doesn't, then the person will be dissatisfied. And you lose credibility. However,
with expectation management you carefully articulate the potential good and bad
outcomes, even emphasizing the negatives. Then with the same idea and same outcome,
the person will be pleasantly surprised. You delivered more than they were led to expect!
Congratulations.

This technique is essential for group dynamics (e.g., meetings). Always promise less than
you can actually deliver. In meetings, tell people clearly what you expect them to do,
explain the caveats (i.e., expectation management), and they will often overachieve.

Expectation management is used in a convoluted form in software product marketing.
Since marketeers are selling to the customer's needs, an inflated product image is created.
This is called the expected product [Moore 96]. People buy the expected product because
it appears to meet their needs. What they actually buy is the generic product, which is
what the vendor can deliver. In marketing terms, "crossing the chasm" is the transition
from a customer base who will buy based upon sexy technology expectations to
customers who will buy based upon real-world quality to satisfy needs. If the product is
successful, there will be time to enhance it to actually meet expectations. The product can
then become an augmented product through extensions and up-selling options. However,
this standard model for software marketing almost always leads to disappointment.

Ideally, expectation management is a form of truthful disclosure. By telling people the
truth about the potential outcomes, you establish a psychological framework of
expectations. In reality, you can contribute to causes but you cannot control the absolute
outcomes. If you do a good job, you are contributing to the desired outcomes. And
chances are you'll be able to deliver upon expectations, most times. If you don't manage

IT-SC 215

expectations, then you will underperform in people's perceptions, even with the same
outcomes. We highly recommend that you apply expectation management; it is a
technique that we use every day.

9.4 Psychology of Truth

It is important to understand the meaning of truth, and how to use it, as the basis for your
psychological warfare. In an absolute sense, everything that you know is an abstraction of
reality. We could say that "everything you know is wrong," which is true in an absolute
sense, but not very productive. Thinking more constructively, we can describe our
understanding of reality as a set of patterns and models. These patterns and models are an
illusion (or, more accurately, a self-inflicted delusion). For example, one can say:
"History never repeats itself," which is true in an absolute sense because the world is
always changing, always progressing in time. Or so we think.

Software architecture knowledge consists of models. In the hard sciences, it is common
knowledge that nature knows nothing about physics. Newton's models for classical
mechanics are wrong, when taken out of context. So are Einstein's theories of relativity.
However, within their intended contexts, these theories are accurate descriptions of how
things happen in the universe. Research in design patterns and AntiPatterns explains why
these models work in practice. With the right context and forces, the appropriate model
for the solution usually works and produces predictable outcomes.

Despite its weaknesses, classical mechanics is the theoretical model behind numerous
human achievements, including rocket science, machinery, buildings, and bridges. In
proper context, Einstein's theories accurately describe nuclear energy and near-light-
speed digital communications in distributed systems.

9.5 Perception Is Not Reality

It is essential for you to understand some important aspects of mass psychology. Most
people believe that "perception is reality" and "seeing is believing." And there may have
been some time, before technology, when that was a reasonably effective way to think.
But it is not so today. Perception is not reality because technology can falsify perceptions.
Technology can create powerful illusions. And especially with computing technology,
illusions are becoming easier and easier to manufacture.

For you as an architect, the ability to envision new illusions and impress them upon
people's imaginations is vitally important. The architect works in the gray area between
intuitive perception and the logical certainty of software. In order to translate intuitive
system concepts into software reality, we must have a talent to envision architectural
structures. Then we must be able to document these visions and articulate (explain) them
in a way that sells the concepts to other people. In other words, we start system
envisioning by creating an illusion, and then proceed to architect the system, providing
more and more depth to the illusion, until it appears obvious what the system is about,
why we should build it, and how it can be realized.

IT-SC 216

Not all system illusions are worth building even if they are very "sexy." It has been said
that "whatever man can see and believe, man can achieve." Software development is an
ideal refutation of this kind of wrong-think. A great majority of software projects
envision illusions that cannot be effectively realized. In effect, many software projects are
subject to the illusion of "imagination run rampant." The architect is responsible for
moderating this situation. The architect has the power of imagination, like most people,
but the architect is also responsible for managing risks, both technical and people-
oriented, that could impact project success.

In an often-used analogy, software efforts are like building different types of cars. First
we build a Ford Pinto (or Yugo). The system does something useful, but the engineering
and manufacturing are not superb; in fact, they are just the opposite! Often the system
does not meet the full expectations (system illusion) of the users. But in the eyes of the
developers, if the system actually works, they gain much confidence and are ready to try
again with much more ambition. When the team tackles the next system challenge, it
builds a Cadillac with all the bells and whistles. With encouragement from the users, the
system developers create overly ambitious requirements that cannot be effectively
realized. Cadillac projects are likely failures. The project bogs down in trying to create
too complex a system; the effort lacks focus. After this failure, the team takes a much
more sober approach to the next system. This time they envision and build a Volkswagen
Beetle, a modest system, but very practical and well engineered. It meets human needs
and works reliably. That's the whole point.

As architects, we want to facilitate our projects to avoid these extremes. Architectural
planning creates a solid system structure that goes beyond the engineering limitations of
the Pinto/Yugo. We give the developers an excellent chance to avoid this phase of system
evolution. We also argue against building the Cadillac system. We want to advise our
colleagues to be practical and avoid the pitfalls where so many other projects have failed.
Ideally, we want to design and build the VW on the first attempt. Sometimes you can't
talk people out of making these classic mistakes, so you may get forced into building the
Pinto/Yugo or Cadillac. At this point, it is okay to make your opinions well known,
perhaps vehemently (we favor the adult-assertive approach). If they don't understand
your concerns, then document them clearly and move on to new challenges. Do not dwell
on lost battles or try to undermine the committed direction of a project, whether you are
right or wrong, once you have lost the argument. As a computer scientist once said, "It is
the fate of competent advisors to have their best advice ignored." As you already know,
people don't listen.

9.6 Exploiting Human Weaknesses

One of mankind's greatest psychological weaknesses is that we jump to conclusions too
easily. Competent software architects can turn this weakness into a strength for their
software organization and the software industry. By creating compelling reference
models of software knowledge, we lead our organizations to the appropriate conclusions.

Software architects command extensive knowledge about software technology, software
organizations, and real-world business processes that our systems support. Knowledge is

IT-SC 217

power—in this case, the power to change perceptions. For most people, perception is
reality. Reference models are the pattern of the solution for transforming perception into
real-world success. Let's explore some examples.

Reference models are commonplace in other fields of human endeavor. They facilitate
successful practice in sales, investment, journalism, public relations (PR), economics,
psychology, digital hardware design, and consulting. A classic sales reference model is:
person, organization, goals, and obstacles (POGO). The analogous reference model for
investment analysis is: strengths, weaknesses, opportunities, and threats (SWOT).
Journalists and PR professionals use a reference model comprising six questions. These
reference models provide an invaluable structure for human discourse that assures quality.
Interestingly, many of these models have been incorporated into software standards and
practice. For example, the Zachman Framework adopted the journalistic reference model
directly. The Reference Model for Open Distributed Processing (RM-ODP) assimilated
models from economics and psychology to standardize software architecture viewpoints.

The Hardware Design Level Model (HDLM) has been used in digital engineering
practice for more than two decades. HDLM separates design context and forces, so that
every EE student learns in college how to design and optimize digital logic circuits with
relative ease. Reference models simplify problem solving, so that ordinary professionals
can practice their disciplines with world-class results.

Hence the contradiction: Why haven't reference models been used to structure effective
software practice? In our opinion, the most effective reference models are unknown by
the profession and academia—for example, the Software Design Level Model and RM-
ODP. Other powerful reference models have been imposed with unfortunate
consequences. For example, Capability Maturity Model (CMM) certification has become
the software equivalent of the Spanish Inquisition. Articulating reference models so that
they assist in individual decision making is a kinder, gentler way to reform software
practice, and ultimately more effective.

Reference Models as Perception

Applying the classic reference model for consulting intervention, there are three basic
questions that the readers (software architects) should consider:

1. What is the problem? Reference models are basic intellectual tools that
are virtually nonexistent in software practice. Effective reference models exist but
are relatively unknown by the profession. The corpus of software knowledge is
not expressed in terms of reference models. The lack of reference models inhibits
our profession from separating design forces and evolving software into an
engineering discipline with successful, predictable outcomes.

Software professionals need reference models in order to
understand abstractions. For example, the founders of the
software design patterns movement (The Hillside Group) have
claimed that four out of five software developers cannot abstract

IT-SC 218

effectively. The Hillside Group's classroom experience is
supported by Meyers-Briggs surveys of the general population;
only 20% of adults have the appropriate world-perspective to
define abstractions. Reference models are a necessity in the
confusing, rapidly changing technology environment in which we
practice.

2. What are other people doing to contribute to the
problem? The hard technology problems addressed by reference models are
"application problems"—a phrase vendors repeat laughingly, all the way to the
bank.

3. What are you (software architects) doing to contribute to
the problem? This question leads to a Gestalt turnaround: What can we
(software architects) do to resolve the problem? We can learn the available,
effective reference models for software. We can educate and evangelize the
profession toward the use of existing, effective reference models. When we see an
important issue unresolved by available models, we can create a new model,
optimize it, and contribute it to the corpus of software knowledge. The
instantaneous global reach of the Internet make this imminently feasible. We can
mentor our peers constantly about reference models, design patterns, and other
forms of software problem solving. We (software architects) can take
responsibility for our part of the mind-boggling problems and opportunities that
the software industry is confronting. Through the articulation of reference models,
we can help the software profession become more enjoyable and successful.

Biological Response Model

One of the most universally useful reference models describes biological response
(Figure 9.1). This model shows what happens as a biological system is stressed to
various degrees. It can be used to describe how people behave, psychologically, when
stimulated, and how people can change their minds or behaviors. It is also a good
description of how you might respond to external stimulation, so with an understanding
of this model, you can choose to follow your biological instincts or choose another path.

Figure 9.1. Biological Response Model

IT-SC 219

The biological response model works according to various stages of excitement. Initially,
if the stimulation is small, it is ignored, either deliberately or unconsciously. Consciously
our response might be: "It's not important" or "I'm ignoring it." Biologically we are
drawn toward small stimuli.

As the intensity of stimulation increases, our attraction changes and we are increasingly
repelled. The next level of psychological response is denial, or deliberate ignorance. In
denial, we deny the truth or existence of a stimulus event. We turn away from it. We do
this automatically; it's human nature, which makes it very difficult to control this part of
the response.

As stimulation continues to increase, so does excitation. When a stimulus becomes
impossible to deny, we become angry—or joyful—depending upon the situation. It is not
possible to maintain a high level of excitation indefinitely. So, in short order,
psychological energy is released, such as an angry display or laughter.

If the stimulation persists beyond a state of excitation, then we experience depression
(sadness) or a state of acceptance. Further stimulation above this level of intensity can be
fatal.

In psychological warfare we use the biological response model to our advantage, because
for most people these are automatic responses of which they are not consciously aware.
In fact, some people are so unaware of their own responses that they may not even know
when they are angry, until they erupt in an excited frenzy. "Gone ballistic" is the popular
phrase for this behavior.

We use this model by adjusting the intensity of our architectural evangelism according to
the situation and desired outcome. In some cases, we want to get something accepted
without much controversy. This is called "flying under the radar screen." We keep the
message at a very low level of intensity and mention the matter infrequently. In some
cases, we want people to take notice and to change what they are doing in accordance

IT-SC 220

with our ideas. In this case, we may want to push them right over the top of the model
and get them very excited about the concept, with a goal toward changed behavior
(acceptance instead of ignorance or resistance).

Group Applications of Response

The biological response model can also be applied to the facilitation of groups, although
we are straying from the biological origins of this model when we do so. In theory, each
of us individually has a group inside our minds, formed through early childhood
experiences. This reference model indicates that we all have interactions between
members of our internal group. Real groups are the extension of this concept into
interpersonal interactions. So we use these concepts to explain that, if the response model
applies to individuals, then it can also be extrapolated to groups.

As the model implies, people often get excited about something before they change their
behaviors and accept it. Laughter is one way to push groups over the top and into release
and acceptance. Laughter is a great way to diffuse successful situations and win
arguments. The experience of laughter involves a high level of excitation and leads to an
immediate release of stress (i.e., exactly what we're seeking). Some of the best comedy is
self-effacement—in other words, making fun of yourself. Watch standup comedians on
television to learn more. Particularly watch for humor based upon self-effacement. Also,
the worst kind of humor relates to human body parts. You will see professional
comedians use this kind of humor too often for their own good. Avoid this kind of humor
at all costs, for reasons such as political correctness.

In groups, we tend to link response models together, so that we create waves of responses.
Since death is seldom an option, we continue beyond each state of acceptance into a new
curve of excitement. Repeatedly we want to bring individuals and groups to a high level
of interest and excitement, make a decision, then move on to the next matter. Meeting
facilitation, covered in other chapters, uses the principles of biological response with
groups in this way.

We use meeting breakouts to enable people to create something (anything as a first draft),
so that they often have ownership and are excited about defending it. It also gives us a
starting point for discussion, even if it's bad. We then give them their chance to defend it
in public. That's very exciting for the presenter. If the presentation provokes a response
from the audience, then he or she can become very excited too. Good things are
happening. We have experienced group excitement in very positive and negative senses.
Either way is equally beneficial from the facilitator's perspective. In either sense, an
excited group is a group that can make decisions and implement choices vigorously. The
last thing we want is a group that's falling asleep. In that case, behaviors won't change
and little progress is made.

9.7 Example: Reference Selling

One of the ultimate weapons in psychological warfare is the power of illusion. In this
warfare we prey on human weaknesses with positive intent. Suppose we had to sell a 10-

IT-SC 221

million-dollar software system (i.e., very expensive). The buying authority for such a
product may not even exist entirely within the IT community of the organization; perhaps
it resides in the Chairman of the Board of Directors. But even more important than
influencing the Chairman will be justifying the sale to the organization, so that the
executives have a clear indication of need. It's a lobbying effort on a massive scale,
because no one individual needs (or can justify) the whole system, but each may benefit
in his or her own way from the purchase.

This kind of salesmanship assignment is a primary activity of software architecture, as it
is for software salesmen. But the need to "sell the system" may be just as great for the
architect. And the situation, as we have posed it, is within the scope of the kinds of
"organizational sales" that software architects participate in and sometimes lead.

The trick for making such a large sale is in the sales pitch. First, you need multiple points
of contact in the organization, ideally representing multiple chains of management. We
want to talk to each point of contact with the intent of achieving two key things. The
highest priority is to convince them that what you are selling is what they want. Then it is
important to get them to articulate that need. We will use that information later. Then you
want to get additional referrals to other people in the organization. If you succeed with
your first contact, you are well on your way. You have a successful sales pitch. However,
it often takes three to six months to complete business on this scale.

We use the referrals to lobby additional points of contact in the organization. Remember
that leaving a voicemail is not good enough. We need to get them on the phone and/or
meet them in person to deliver our pitch. On the second and subsequent contacts, we use
the fact that earlier contacts indicated "need" for the product in order to convince our
current prospect that it's a growing wave of demand within the organization.

We are telling the customer that it's safe for him/her to support this purchase, because
many other people already do. It's a done deal. It's a fait accompli. Real salesmen will
stretch the truth (via careful articulation) just a bit in order to make their point. In other
words, this is a form of namedropping, with a systematic intent. What's important is that
we are using the power of illusion to create and consolidate demand for our product.

We are describing a systematic sales process that is used by some of the world's largest
software companies, called "reference selling." The software architect should be aware of
how this process works, both in order to resist its influence from the outside (if
necessary), and in order to use the process to build consensus on the inside of the
organization (when needed).

9.8 Psychology of Ownership

With individuals and groups, a very important concept is ownership. This is using the
"not invented here" syndrome to our advantage in psychological warfare. Ownership can
take a long time to develop but is a very important concept for the architect to foster.
Ownership can be much more easily eliminated than developed.

IT-SC 222

Ownership can be quickly eliminated if there is one "know-it-all" person who overrules
and makes all decisions on a design or project. For some naysayers, this is the definition
of the architect's role. To avoid this perception, the architect cannot be a micromanager.
The architect should focus on architecturally significant questions and delegate
engineering design questions to the responsible developers. In this way, individual
developers acquire and control ownership of their own design space. Interfering with
their design decisions, without an overwhelming reason, can be deadly to a project,
because it destroys ownership.

Smart people know how to give someone else an idea. This is the key to ownership on the
personal level. On most projects there is a "customer," someone who literally owns the
project from a financial or responsibility perspective. Many customers are quite insistent
that their ideas always take precedence, even if they are not qualified on the technical
subject matter. Anyone else's "bright idea" can be either accepted or discarded, based on
their whim or fancy. As an architect, you need to be sensitive to this phenomenon. There
are some arguments which you can't win, no matter how right you are, because you don't
"own" the project. It is not your money being spent, for example.

You must learn to let go of certain cherished ideas, if you can't win over the real project
owner. In our work experience, this situation will arise most frequently when there is a
direct family relationship between the real project owner and a team member. Many good
ideas will get overruled because the family member disagrees—whether or not he or she
is really qualified to do so. This is a good example of "life is not fair." And it is
something that you will have to live with, unless you leave the project.

Ownership is best fostered in a relationship of trust among the team members and the
architect. There must be a division of design responsibilities if there is to be both
ownership and quality design. The architect is responsible for architecturally significant
decisions. The other team members each have assigned responsibilities. If everyone
contributes, and is told how important his or her contributions are, there is the proper
environment for establishing a sense of ownership. Ownership requires respect for all
team members, no matter how large-scale or narrowly focused their responsibilities are.

In the psychological warfare over ownership, the desired outcome is long-term peace,
with mutual respect and trust. A powerful weapon in this battle for peace is showing that
you care about team members and their ideas. Some might call it affection or love.
People won't listen to you until they know you care about them. Psychologically, what
people want most is "to know that they matter," that you think their ideas are important
and worth considering, that you think their contributions are essential to the effort. This
feeling of mutual respect should be fostered at every opportunity. Showing respect for
team members often results in reciprocal feelings for the architect. We use these concepts
often in our own daily lives.

Some architects do rule by ego. They do their best to dishonor and discredit other
people's ideas through political techniques and/or meeting confrontations. And they can
be very successful, professionally. In the wake of such people you will find many
discontented persons, crushed by the overwhelming ego. This fosters feelings of

IT-SC 223

resentment which are long-lived, well beyond project completion. We do not like
working with people like this, although we have had plenty of experiences with such
people. You will have to make your own judgments, if this is your style of interaction.
We do know that the person who rules by ego destroys ownership intentionally. And we
think that practice is counterproductive.

9.9 Psychological Akido

Being an architect is a tough job. It can be particularly challenging to your psychological
health. It is difficult to stay positive and happy while it sometimes seems that the whole
world is upon your shoulders. And bad things happen all the time. It can be quite
frustrating at times. Most adults experience frustration often; statistically, a typical adult
gets angry about 10 times every day. That's normal psychology.

The common man, inexperienced in psychological warfare, is constantly trying to get
himself out of trouble. As experienced warriors, we embrace trouble as much as we
embrace success. Good and bad things happen. Most of the events are of small
consequence. And many events are out of our control. To be happy in a world of trouble,
we must learn to let things go that we cannot control, and to contribute to the success of
those events that we can influence.

To acquire the ability to endure bad events and remain happy, we use a philosophy of
personal expectation management. We try and try to create success on software projects.
We try and try to help our peers and colleagues achieve career and personal success. But
in our personal expectation management, we expect nothing—no change in outcome,
regarding our involvement. Like medical doctors, we try to do no harm. But there are
times when good work leads to bad outcomes, too. It's the luck of the draw. Every day
and every decision is a gamble. When nothing happens, great! It's just what we expected.
When good things happen, great! It's a pleasant surprise. When bad things happen, there
is often a much greater opportunity to be exploited. We should look for it and attempt to
bounce forward, instead of being discouraged.

We learn the most from our mistakes, and the least from our successes. Not that we seek
to fail. With an attitude of personal expectation management, we don't expect our
strategies and patterns to work. So we give it our best effort, acting as if it won't work
unless our input is perfect (in a time-bounded sense, of course). For example, suppose we
are applying a software design pattern to one of our architectures. If we make a half-
hearted effort to apply the pattern, it's very unlikely to generate benefits. Developers will
easily ignore it or misuse it so that the benefits evaporate. If we apply the pattern with a
reasonable effort, reasonable documentation, and so forth, we are assuming that good
things will happen, and with luck the pattern will generate benefits. Developers might
understand exactly what we mean, and even add value to our pattern application. We
think this is wishful thinking in practice. Finally, suppose that we decide to use the
pattern, assume that it's likely to go wrong, and apply it with exceptional care and due
diligence, documenting and communicating clearly our intentions to the developers. Even
though we expect nothing, we have given the pattern the best chance to perform its

IT-SC 224

function. If nothing good happens, so be it. If it works, that's great, and a very pleasant
surprise.

In Psychological Akido, we apply these philosophies in terms of a process of learning.
We expect both good and bad things to happen as a result of our architectural work. Our
goal is to understand "how things happen." MBAs learn that good things happen when
you pull the "action lever." An action lever is anything that you or your project might do
to effect change. Unfortunately, we live in world of confusion, of increasing change and
information overload. Seeing the action lever is difficult and often requires experience
and expertise. That's why companies hire expert consultants; they know where the action
lever is. An architect plays this role as well, within the scope of technology and system
building.

When good things happen, we have found an action lever, perhaps by accident. The cause
may not be immediately obvious. We try to apply the same techniques again in a
systematic, experimental way, in order to refine our knowledge of the action lever. When
bad things happen, we learn even more. We have found one or more destruct button,
which we must try to avoid on future trials. As experience progresses, we learn to avoid
the destruct buttons and pull the action levers, becoming more effective.

It is interesting to note that the process of learning to use a computer involves these
principles directly. In one dramatic experience, we once took a programming class for a
new operating system, in beta test. The software had many defects, as all commercial
operating systems do, but these defects were much more prevalent than most of the class
had ever encountered (in a near-production release), all of us being experienced software
engineers. Because we had not learned the destruct buttons of this new software,
everybody experienced frequent crashes, requiring reboot. About 30 reboots were needed
on the first day alone, as we attempted to perform simple tasks. The situation reminds us
of when we put noncomputer users in front of a demonstration, and they break the
software within the first few keystrokes—a well-known phenomenon. In our rebooting
laboratory, we learned to "do this and this in a specific order" and "not ever do that," plus
remove an erroneous file or two after rebooting. Overnight, many of us thought that it
was hopelessly buggy software. By the second day, all students had cut their rebooting
needs in half. And we were able to perform more sophisticated programming tasks than
we had attempted on the first day. By the end of the week, we were able to perform
extremely sophisticated programming tasks, with virtually no rebooting required, except
when we chose to reboot intentionally. We had learned the action levers and the destruct
buttons. Most surprisingly, we didn't have to think about it; we did it naturally, as we had
internalized this knowledge about how we used the system. On reflection, this experience
is common to people who use computers. This was just a dramatic example of
experienced software engineers repeating the process for new software.

Psychological Akido is much the same, but instead of learning to control a machine, we
are learning to survive the psychological warfare that is life. As architects, our life
stresses are significant. We use Psychological Akido to help us to cope with life and to
learn to perform better and better. Psychological Akido is our quality control process for
psychological warfare.

IT-SC 225

9.10 Intellectual Akido

Psychological Akido is a defensive strategy that works on a personal level. It guards us
from the insane situations and environments that we often encounter in our profession. As
architects, we should attempt to do more than merely protect ourselves. We should try to
help others to grow professionally and personally.

Intellectual Akido is an extension and scaling up of the former practice, to affect many
more lives and change the way that people do software. In a sense, the goal of Intellectual
Akido is to make the world a better place. Mentoring individuals one by one, we can have
some limited impact, perhaps helping a few dozen people over a lifetime. In
Psychological Akido, our scope can be much more ambitious, possibly affecting
thousands of lives directly.

We apply Psychological Akido as a front-end process, gathering knowledge from good
and bad experiences. The next step is to transform our positive experiences into patterns,
in the "software patterns" sense. We want to find practices that repeatedly work, so that
we can share them with many others. Initially, we prove to ourselves that the patterns
work, by applying them in our own work. Then we mentor other professionals to do the
same. We learn the ins and outs of the new technique.

When we are satisfied that the quality of this knowledge is worth sharing on a wider scale,
we shift knowledge-sharing strategies. We transition from one-to-one sharing (e.g.,
mentoring) into one-to-many sharing. This transition is an essential idea for affecting the
practices of large groups of developers. Suppose you were an enterprise architect or a
Chief Information Officer. You would have to execute educational and administrative
strategies that change behaviors on a mass scale. One-to-one mentoring simply wouldn't
work.

One thing that you must do is to generate documentation. A useful first step is a set of
tutorial briefing charts. With these charts you can project your message to groups ranging
from a half dozen to several hundred people. The experience of teaching and answering
questions will focus your knowledge of the solution and how it is executed. In a sense,
you are providing many shortcuts for your student's own Psychological Akido process.
You are telling them explicitly where the action levers are, and what to avoid in terms of
destruct buttons.

In many cases, some 5% or more will listen carefully, learn the new patterns of
knowledge, and apply them to their own work. According to the Nolan Curve, a classic
learning theory, if 5% of your skill base can successfully apply much more effective
practices, the other 95% will eventually migrate. Within a single organization, a tutorial
may be sufficient to effect the required change. Ideally your tutorial includes an even
balance of lecture, experience, and feedback (e.g., discussing their experience). From a
training perspective, what the students do successfully in class, you can expect them to do
on the job. Experience, such as programming laboratories, is vital to their effective
knowledge acquisition.

IT-SC 226

To affect a large group of developers, you need to go further in your knowledge
dissemination. A magazine article is a wonderful way to communicate to very large
groups. It's wonderful because it's a relatively short-term commitment on your part, and
the rewards of professional recognition are superb—almost as good as writing a book.
Magazines are continually seeking talent, and if you have something that really works in
this chaotic software industry, the knowledge is probably well worth sharing. Posting the
same information on the Internet is useful, but not nearly as persuasive as the magazine
format.

Everything we have done so far in this process has affected many lives. But the impacts
are transient, at best. The tutorial helped us to focus our ideas and develop the verbal
articulation of the ideas which is necessary to communicate the message. To create
permanent knowledge we must go further. In particular we are talking about books and
standards. A standard is a documented technical agreement. It has great moral hegemony.
Most standards focus on detailed technical solutions that are intended for vendor
implementation. If your ideas are applicable, this is a reasonable mechanism to pursue,
given its shortcomings—primarily compromises and long delays. We do not discourage
standardization, since we have pursued this approach on a number of occasions.

A book defines intellectual standards. Note that the role in society of journalism and
publishing is to confer credibility upon authors, people, and organizations. A book is the
ultimate form of journalism. It yields substantial credibility, as well as professional
recognition. Hence the phrase that he/she "wrote the book." It is also said that "he who
writes, writes history." Exactly. The book author is in a unique position of defining a new
ground truth, a new reality—new ways of thinking and perceiving that are a permanent
part of human history.

For example, many more people (perhaps 1000X) have read our books on CORBA than
will ever read the standard. It is an awesome responsibility. As architects involved in the
CORBA standardization process, we use this authority to articulate the technology in a
way that is more effective than the standards alone. If you study this situation, you will
discover that there is a great gap between what can be readily assimilated (and what is
useful in practical applications) and what appears in a typical standards document. A
standards-oriented book resolves this gap and makes the technology usable to much
greater numbers of developers.

Winning the War

After the book, the job is not nearly finished. As a result of the book, good things happen.
In our early book experiences, we were surrounded by naysayers prior to publication, and
they all disappeared around the time it was published. They quit their jobs or were
transferred into obscurity. Miraculous, to say the least. We were asked to do many more
tutorials, worldwide, and to write magazine articles—an almost endless demand for
knowledge and wisdom. You can leverage your newfound popularity to enrich your
business, or you can go further in the process, which is not nearly complete.

IT-SC 227

The transition from grunt to expert began on the day you stepped up to the podium and
gave your first tutorial. You became the expert (whether you deserved it or not) because
you had the courage to put yourself on the front line for the sake of your message. That
warfighting spirit can carry you through step after step of Intellectual Akido, until you are
affecting many people's lives, and making the world a better place. According to surveys,
public speaking is the number one fear for most adults, more so than death. Since you
were able to overcome a fear worse than death, you have earned the "right to speak" and
a position of respect and authority.

As you travel about the world sharing your message (post book), two important things
happen. First, you learn to articulate your message an order of magnitude better than
before you wrote the book. You grow and transition from imparting a little bit of
knowledge (which everybody knows is dangerous) to communicating lethally effective
practices. This newfound confidence does not continue forever, so enjoy it while it lasts.
Second, you gain a much deeper sense of how things go wrong by applying your
knowledge. What are people's basic misunderstandings? How did they try and fail to
succeed?

A second book, describing the AntiPatterns of the misapplication of your ideas, might be
an appropriate follow-on. This will help many more people to avoid the common pitfalls.
Also, you have gained much more knowledge by following through with this process.
Since you have so much more to share, someday you may want to write again—and
repeat this final step in the process.

As a series editor, and an advisor to many authors, I always tell them: do not be afraid to
share everything that you know about that topic. Be generous with references and
citations. The emotional instinct is to hold things back. Save some key bits and pieces for
myself, so that I can make money. Not necessary. Not even close. In Intellectual Akido
our philosophy is to give it all away. And when you give it all away, you gain so much
more. Because there are so many people in this industry who try to hoard their knowledge,
the Akido practitioner is a welcome and refreshing alternative. It is also a principle of
entertainment, that the actor/actress who gives everything on stage is the most
appreciated. The more you give, the more people will enjoy and benefit from your
message. And you will grow in knowledge, much faster than anybody can attempt to
"catch up" to you.

Winning the Peace

Most of the people capable of "catching up" to you technically will probably scoff at your
work and not bother reading it anyway. That's one of the unpleasant shortcomings of this
way of life, but probably unavoidable. Professional jealousies will arise. People will be
on your case because they feel resentment about your popularity and success. Luckily,
there will be few and infrequent encounters. Be sensitive to this.

To follow our way of coping, you must become a kinder, humbler, and nicer person. Do
not give these people a reason to criticize you. Never win an argument by implying that,
"I wrote the book, so shut up!" Never brag about your accomplishments; let others do that

IT-SC 228

for you. Win by explaining your ideas, which by this time are very well thought out. Let
naysayers make up reasons to dislike you, and eventually they will fade away. When you
must go up against these people, stay off "front street." Let other people do your talking,
while you quietly work in the back room writing the architectures and specifications,
doing work that you love.

As your success grows, some of your peers will want to beat you up for any number of
reasons. You may have become the symbol of a technology that they don't like. You may
be a competitor to their business or their ego. You can attack them head-on, but we
wouldn't recommend it. We have tried and failed using this approach.

What's much more effective is an age-old secret of psychological warfare. Be gracious.
Turn the other cheek. Most outside observers won't see the situation in terms of issues;
they'll interpret a confrontation in terms of personalities. If you are the cool guy (or gal)
they'll see the other player as a hothead—someone who is venting anger, not someone
who is rationally motivated. We were cheered up, after a recent scuffle, when one of the
observers commented that: "At least Tom Mowbray is cool." Remember that "the people
have the power," not your hotheaded peers.

An even deeper warfare secret, which always works, is a four-letter word. Love. It's
almost unbelievable, but this word has the power to erase all bad feelings, and reverse
insurmountable conflicts. We have seen it work for us in recent days, resolving
impossible situations that most people assumed would be protracted indefinitely in the
fires of war. If you know someone well, it is perfectly reasonable to wish them well and
send your love and respect to them and their families. Do it. Don't hold back. Express
your feelings honestly and sincerely. You don't need to say much. Once is sufficient. And
it is merely a small personal gesture. But it is the key to winning the peace. This is the
ultimate weapon of psychological warfare.

9.11 Conclusions

Psychological warfare requires essential skills for maintaining your own peace of mind
and affecting the world about you. As a software architect, you endure tremendous
psychological pressures which you must manage, both for yourself and your software
organization. Using these techniques, you can progress from small successes to global
influence. We emphasize that you should apply these powerful techniques "for the right
reasons." Hopefully, your number one motivation for being in this profession is not to
make money. To be a true professional you must love your work.

We can unkindly describe the person who's in this business only for the money as a
confidence trickster. Another popular terminology for describing these sorts of people is
"trough guy," as in a pig trough. We fully understand that there are some roles in the IT
business where this way of thinking is appropriate, such as sales engineering. And we
have seen several friends follow this path, which leads to quite abrasive ways of
interacting. But we take strong exception to this attitude in software architects. It is
simply bad behavior and highly inappropriate to attain success as a software architect.

IT-SC 229

In our philosophy of software architecture, we don't use psychological warfare for purely
personal or selfish reasons. These techniques are strictly apolitical. Both good guys and
bad guys can use them. And nobody is either all bad or all good. To be the good guys,
and do our jobs properly, we must be sophisticated about psychological warfare
techniques. We use this knowledge to defend ourselves, defend our projects, and make
progress in otherwise intractable situations.

9.12 Exercises

Exercise 9.1

You will need two 15-minute segments of time to complete this exercise in "reading
between the lines."

First Set:

Select a historical or fictional book that you might consider to be rather dry reading
material. Depending upon your tastes it could be the Holy Bible or Catcher in the
Rye. Find a story about people, and read a paragraph or two carefully. Think about what
was it like to be those people. What motivations could they have? What pressures were
they under? What do they want and why are they doing what they're doing? Use your
imagination to fill in the details of their lives that further explain and enlighten the story.
Have someone ask you these questions about the story and hear what you come up with.

Second Set:

Now select some technical reading material, perhaps a recent magazine. Pick articles
written by vendors or consultants, individuals who are likely to have an agenda (selling
something) for writing the story. Read a few paragraphs and think about them. Why are
they telling you this? What is their agenda? How does their message compare with what
you already know about the topic? Did they neglect to mention something germaine to
the topic? Do they claim something which you suspect is misleading or blatantly false?
Did they include proper citations for verifying their claims, or are they vague about their
sources? What is their surface motivation, e.g., telling you about the Java language? And
what is their true motivation, e.g., selling you their Java tool by telling you how hard your
work will be without some great tool?

Background for Solution:

This is an exercise in subtlety. You are learning to perceive beyond the surface content
and get into the author's head. What you know from your perspective is equally as
important as the content that you are reading. Most messages that we encounter every day
come from biased sources and there is a hidden agenda for sharing this information—for
example, advertising and commercials. But more important, much of what you assume is
unbiased editorial content (e.g., newspaper stories) is actually based upon press releases
from highly biased sources. In fact, some large software companies have hundreds of

IT-SC 230

public relations agents feeding information to the media as quickly as they can assimilate
and print it. This is the world of managed perceptions that we live in. Either learn to see
through it, or be misled by most of what you read.

Exercise 9.2

To learn the concept of internal psychological control, there are a few things that you can
practice all the time to consciously modify your natural reactions.

First Set:

When someone comes to you with a technical idea, it is natural to try to talk him out of it.
We naturally want to discourage people from attempting things that lead to
disappointment. In this exercise, try to spend a whole day encouraging people, instead of
discouraging them. Before you reflexively blurt out your discouraging message, STOP!
Take a breath. Think of a positive message, one that will give them ownership and
permission to try it on their own recognizance. This exercise is about changing your own
behavior. This discouragement behavior is one of the most obvious natural reactions, so
we use it as a classic example which you can work on.

Second Set:

Unless you are in a high light environment, like San Diego beach, most people don't
smile as a regular habit. In this exercise, try smiling when you encounter people—friends,
acquaintances, and nonthreatening strangers. Inside your head, the message you want to
convey with your smile is, "I want you to know that you matter and I care." This
conscious modification of behavior will have a positive impact upon the people around
you. You'll be having a good day, and you won't know why.

Background for Solution:

There is a distinct difference between what we would do naturally and emotionally, and
what we should do for ourselves, our friends, and our businesses. Psychologically, we
may be stressed out, we may be frustrated, we may want to lash out at people emotionally,
sometimes for the slightest implied insult. In psychological warfare, we know that it is
"always a mistake to take things personally." Before we react emotionally, internal
control should kick in, directing us to respond, not react. By responding with internal
control, we can maintain important relationships in our lives and our businesses, which
might otherwise be destroyed in a few heedless moments.

Exercise 9.3

Try the following. Soon. Suppose that you know that you are about to be asked to deliver
something, and you are on your way to management to discuss the details. In this
exercise, we apply expectation management to our commitment for delivery.

IT-SC 231

Let's say that you think it's about one day's work, but you're likely to get interrupted and
miss a one-day deadline. You believe that if you had two days, you could easily complete
the task and deliver. And in three days you could deliver a gold-plated high-quality
version.

When you talk to management, I would propose three days, initially, and claim that, "I'll
be able to deliver what we basically need by that time." If management balks, and claims
they need it in one day, I would tell them the truth, with a bit of underselling. "I really
need two days to do an adequate job. I'm very likely to get pulled off into other tasks
during those two days, so it will be a struggle." If they absolutely insist on one day, tell
them the truth again. State your conditions. "The only way I can deliver is if I get
absolutely no interruptions. The only way I can ensure that is if I work at home and
unplug the phones."

They should buy on this basis, or find someone else to do the task. So, worst case, you
get to spend a luxurious day at home. Take a long hot bath. Do a few hours of
uninterrupted work. And take the rest of the day off. Worst case. More likely is that you'll
get your two days, they'll expect a minimal job, and you'll deliver a more-than-minimal
product, exceeding expectations. You'll be a hero. You kept your word. You delivered on
time. And your quality exceeded expectations. Well done! You should give yourself a
day off for working so hard!

Background for Solution:

It is quite natural to want to oversell something that you can do in order to quickly
generate consensus. However, if you oversell, you have set yourself up for underdelivery.
And that's the opposite of expectation management.

Exercise 9.4

Applying the principles of Psychological Akido, let's turn around your next negative
situation and find the positive lessons learned. Suppose your boss (or customer) is in the
habit of getting quite angry because the software is late and buggy, or some other equally
normal occurrence. How should you react? Most people would have a reflexive
emotional response (without thinking) which varies widely based upon early childhood
experience (or so the psychologists claim). Some people might get angry, right along
with the boss: "Those darn programmers, they're always late, and their code stinks, damn
them to hell!" Other people can't tolerate anger, and they close down. They become very
passive, afraid, and quiet. Or they find a reason not to be there and leave.

As an expert martial artist in Psychological Akido, our response is to stay balanced. This
is the boss's emotional trauma, not ours. We don't have to be afraid or angry. That's the
boss's process erupting, not ours. We want to be there for the boss, and help him work
through his feelings. Sensitively. I might say something like, "I'm sorry you feel that way
about this situation, how can I help?" Neither angry, nor afraid, but compassionate.
Ideally, let the boss sort his own problem. You might ask some leading questions to get
him started on identifying alternatives. Perhaps, "What do you think is causing this

IT-SC 232

problem?" and "If you had a magic wand, what would we do to fix this?" Help the boss
channel his/her energy into constructive brainstorming of alternatives, and then to
selection of positive actions.

Background for Solution:

There are always alternatives. Using this martial art, we channel negative energy into
constructive planning and action, because fundamentally we believe that positives and
negatives are the same. Both express energy that leads to equally constructive
possibilities. From the experience, we learn "how things happen," and a new way forward
for dealing with negative situations.

Exercise 9.5

Suppose our job was to redirect 100 software projects to use a common process or
standard, such as CORBA, within one year. If we were brilliant enough to redirect one
project every week, through face-to-face mentoring, it would take two years to complete
the task. Nobody is that brilliant or consistently productive. We can't succeed working
one-on-one. That's working hard, not smart.

The techniques of Intellectual Akido show a way forward. The core of the strategy is to
prepare and present tutorials on CORBA that will evangelize and train the developers to
use the technology effectively. In addition, various process and guidelines documents can
make it easy to transfer lessons learned to projects, so that they can adopt the desired
technology readily. In addition we would add a few other elements, such as an executive
policy letter directing all projects to make the transition. We would also add CORBA to
the enterprise operational environment (i.e., site licensing and easy acquisition and
installation by any project) [Brown 98].

When given an intractable task such as the one described in this exercise is to approach it
confidently with a firm grounding in the psychological warfare techniques that will make
you ultimately successful.

IT-SC 233

Appendix A. Architecture Example: Test
Results Reporting System

A.1 Introduction

A.2 Component Interoperability Challenge

A.3 Target Architecture for the TRRS

A.4 Target Enterprise Viewpoint

A.5 Target Information Viewpoint

A.6 Target Technology Viewpoint

A.7 Prototype Implementation

A.8 Prototype Computational Viewpoint

A.9 TRRS Terminology

A.10 Use Case Definitions

A.11 Core Workflows

A.12 Information Model

A.13 Conclusions

A.1 Introduction

This appendix describes a case study architecture for a test results reporting system
(TRRS). The TRRS is a software system initiative that is intended to help software
developers resolve incompatibilities between reusable components. The application
vision is further explained in [Weiler 99]. We begin with a description of the system
concept within the context of UML. Next, the target architecture is defined as an open
distributed processing (ODP) system specified in UML. The target architecture provides
secure database access for a community of software developers and vendors via the
Internet. The architectural prototype is described as a Java language application, specified
in UML.

A.2 Component Interoperability Challenge

IT-SC 234

In the development of large-scale distributed systems, there is a recurring need for teams
of developers to share information about systems. Architecture mismatch is the term
made popular by the Software Engineering Institute to describe the pervasive
incompatibilities between the architectures of software systems [Garlan 95]. This
problem is also an artifact of the increasing use of commercial-off-the-shelf (COTS)
software in application systems. Multivendor solutions are the norm for both legacy and
distributed object environments.

Today, corporate software development organizations must support COTS products from
hundreds of suppliers. Managing the compatibility relationships between numerous
COTS products is a significant and costly problem in most medium to large corporations.
The increasing frequency of software releases from COTS vendors exacerbates this
problem for software developers.

The TRRS is an initiative that attempts to resolve these challenges. Today, software
developers perform a great deal of in-house testing of COTS products in an attempt to
resolve these issues. The TRRS would enable software developers to share testing and
development experiences about successful configurations of software products. In
addition, technology suppliers could participate in the clearinghouse by integrating their
web presence and product information.

A complex, multienterprise system like the TRRS requires significant architectural
planning, including the use of design patterns, architectural styles, and modeling tools.
We describe here the part of the architecture involving UML case studies and initial Java
prototyping. The sections that follow describe the target architecture for the TRRS's
Internet presence; then the initial prototype is discussed.

A.3 Target Architecture for the TRRS

The target architecture for the TRRS is described in UML and organized according to the
Open Distributed Processing (ODP) standard. As described in other parts of the book,
ODP is a standard conceptual framework for object-oriented architectures [ISO 96]. The
ODP framework provides a separation of design forces for managing the complexity of
large-scale distributed architectures. ODP is quite flexible, and its flexibility is utilized to
advantage in this example. For example, not all viewpoints are architecturally significant
for this example, so we selectively exclude those viewpoints that are not necessary for the
purpose of this system.

A.4 Target Enterprise Viewpoint

The TRRS enterprise viewpoint comprises a number of UML use cases that identify
TRRS community participants and their policy relationships. Figure A.1 shows the
UML use cases from the application software developer's viewpoint. The three use cases
in the UML diagram indicate that software developers will be able to determine product
compatibility from the TRRS in a number of ways.

IT-SC 235

Important enterprise policies concern integrity and liability for product statements in the
TRRS databases. Semantic definitions in the UML Object Constraint Language (OCL)
can define the policies (i.e., permissions, prohibitions, and obligations) of the enterprise
actors in the TRRS process.

Figure A.1. UML Use Cases for TRRS

A.5 Target Information Viewpoint

The TRRS information viewpoint comprises a set of UML class models. The information
viewpoint identifies the key concepts that comprise the persistent state of the TRRS
system.

Figure A.2 is a UML diagram showing interoperability relationships between COTS
products. Conformance Statements (Figure A.3) are vendor assurances of product
conformance to standards. Interoperability Statements are a similar concept, except that
pairs of vendors assure mutual product compatibility. Interoperability Test Reports
contain test results from multiproduct interoperability testing. Interoperability Products
are specific COTS solutions for multivendor compatibility. Experience Reports are
documented case studies about successful product integration experiences. Together,
these are the key document types stored in the TRRS database.

Figure A.2. UML for Product Information

IT-SC 236

Figure A.3. UML for Supplier Information

An important tradeoff in UML modeling concerns the number of concepts on each
diagram. As shown in Figures A.2 and A.3, simpler UML diagrams are easier to
understand because they portray a handful of closely related concepts. Simple UML
diagrams can be combined to portray larger sets of concepts on fewer pages. When
combined, the technical meaning does not change, but the understandability varies. Too
many simple diagrams can be just as hard to understand as too few complex diagrams.

A.6 Target Technology Viewpoint

The TRRS technology viewpoint includes three phases of prototype planning (Figure
A.4). These phased prototypes are selected to support incremental system evolution and
scalability. The evolution from phase to phase is enabled by the choice of technologies
and the provision of multitier interoperability boundaries in the implementation.

IT-SC 237

Phase 1 is a rapid prototype configured as a standalone Java application with a flat-file
database. Phase 2 supports multiple clients on an intranet using RMI or IIOP technologies
for distributed infrastructure [Malveau 97]. Phase 3 supports database scalability by
replacing the flat file with a JDBC interface to a back-end database.

The technical architectures for Phase 4 and beyond resemble Phase 3. Beyond Phase 3,
the addition of TRRS software functionality for database entry, database integrity, and
Internet-capable security means significant development challenges. Other development
challenges include the provision of tools for architecture planning and management that
utilize the TRRS data. For example, notification to software developers about relevant
TRRS product entries (using push-technology) introduces a dynamic aspect to software
architecture.

Figure A.4. UML for Prototype Deployment

A.7 Prototype Implementation

In order to plan this prototype, we needed to define an affordable scope of capabilities to
demonstrate the TRRS concept within tight budget and schedule deadlines. The UML
modeling of the TRRS assisted greatly in identifying the core functionality for this first
prototype increment.

A low-fidelity (LoFi) mockup of the Phase 1 user interface was prepared and validated
with potential users of the TRRS. LoFi is a useful paper-and-pencil exercise that enables
rapid evolution and validation of user interface concepts.

IT-SC 238

As a first programming step, the developer used Java AWT Library objects to construct
the user interface. Using cut-and-paste programming techniques from working Java code,
the overall control structure of the application was configured. Additional programming
customized the code for the TRRS application, working on both front-end and back-end
capabilities iteratively.

The sample database syntax was defined using a predictive-keyword parsing strategy.
Multiple record formats were defined to represent the attributes of the key object types
from the UML model. Product data was collected to populate the sample database using
on-line information from vendors' Internet sites. Data collection was limited to a target
market comprising selected database products and compatible CORBA products
[Malveau 97]. The data collection process yielded interesting examples of vendor
architecture mismatches and product data specification.

The resulting prototype is shown in Figure A.5. The main TRRS window displays the
product options (upper left). Software developers select a configuration of products using
the ADD and REMOVE buttons to create the configuration list (upper right). The
RETRIEVE RESULTS button accesses the database from the back end. The bottom
panels display the retrieved clearinghouse documents, including standards conformance
statements, product interworking evidence, and product installation requirements. The
software developer then reviews the desired information using the DISPLAY
DOCUMENT buttons. Figure A.5 is an example of the final screen appearance after
document retrieval and display.

Figure A.5. TRRS Prototype

IT-SC 239

A.8 Prototype Computational Viewpoint

To support future evolution of the TRRS prototype into a deployed distributed system, a
partitioning strategy was employed between the front-end and back-end application code.
The coupling between these computational modules was limited to five operation
signatures (Figure A.6). These Java operations were chosen to directly support a thin-
client implementation for the user interface. The majority of the application logic is
allocated to the back-end. This strategy enables future distributed implementations of the
TRRS prototype, as well as the integration of alternative front-ends and tools by vendor-
participants.

Figure A.6. Computational Viewpoint Signatures in the Java Language

A.9 TRRS Terminology

IT-SC 240

In our opinion, sorting out terminology is an important task for the architect, just because
it seldom gets done on its own by other project members. The architect requires
consistent terminology to articulate the architecture specification. In addition, the
architect often creates new terminology in order to give the developers a handle on key
concepts. The following is a preliminary TRRS glossary:

Experience Report— A report by an independent organization (not
the product vendor) about a set of products.

Feature (or Product Feature) — A significant product
capability that is selected from an enumerated list in the TRRS Categories.
Examples: Security, Directory, Database Access

Operating Environment— An enabling hardware/software
platform configuration upon which products can execute.

Organization— A participant in the TRRS, which may be a
standards group, a product vendor, a testing organization (providing
product-related services), or an IT user.

Product— A unit of commercially available software (i.e., readily
available).

Product Related Service— A technical service that relates
directly to product capabilities or utilization. Example: Training and
testing.

Standard Profile— A "technology" that is published as an open
systems specification (publicly available specification adopted by a
standards group). A standard profile may be a derivative from a publicly
available specification.

Technology— A reference to the specification of a "feature." Either
the technology is a standard profile, or there is a default technology
category: PROPRIETARY. Examples: For Security Feature: CORBA
Security, GSS API, Secure TCP/IP Sockets. For Directory Feature:
CORBA Naming, CORBA Trader, LDAP, X.500.

A.10 Use Case Definitions

In this section we describe the essential system-level use cases, identifying key
interactions with the TRRS system.

The essential interactions with the TRRS system involve the following actors and
transactions:

1. UC001 Product Information Retrieval Session

Key Actor: Information Technology User (IT User).

IT-SC 241

Key Transaction: Retrieving product information and experience
reports from the TRRS system.

2. UC002 Product Information Entry Session

Key Actor: Vendor.

Key Transaction: Entering product information into the TRRS
system.

3. UC003 Experience Report Entry Session

Key Actors: Solution Providers and Testers.

Key Transaction: Entering experience reports into the TRRS
system.

This first set of use cases can be diagrammed as shown in Figure A.7.

Figure A.7. Core Use Cases for TRRS System

Use Case 001 Product Information Retrieval Session

High-level sequence of actions:

User directs browser at TRRS web site.

IT-SC 242

User logs in with IT user privileges.

System identifies user "domain" and presents reference model graphic.

User navigates to selected architectural level and product category using domain
reference model.

User requests display of a specific product category.

System displays a list of alternative products.

User selects a specific product.

System displays product attributes.

Extension: User can display attributes of other products.

User exits TRRS site.

Use Case 002 Product Data Entry Session

High-level sequence of actions:

Vendor staff directs browser at TRRS web site.

Staff logs in with vendor privileges.

Staff requests creation of new product data entry.

System displays product data entry form.

Staff selects product level and product category.

Staff enters product attributes. Uses Product Entry Workflow (UC004).

Staff submits form.

System validates entries.

Extension: System can request updates to form before accepting it.

System confirms receipt of valid form, displaying entries.

Staff confirms form submission.

Extension: Staff can return to data entry form to modify entries and resubmit (Steps 7–
11).

Staff exits TRRS site.

Use Case 003 Experience Report Entry Session

High-level sequence of actions:

Staff of system solution providers or testers directs browser at TRRS web site.

Staff logs in with tester or solution provider privileges.

Staff requests creation of new experience entry.

IT-SC 243

System displays experience report data entry form.

Staff selects product(s) from TRRS database.

Staff fills in experience report data entry form.

Staff submits form.

System validates form entries.

Extension: System can request updates to form before accepting it.

System confirms receipt of valid form, displaying entries.

Staff confirms form submission.

Extension: Staff returns to data entry form to modify entries and resubmit (Steps 7–11).

Staff exits TRRS site.

A.11 Core Workflows

These are core business processes of the TRRS organization. They provide supporting
information for the primary use cases.

UC004 Product Entry Workflow

Key Actors: Product Vendor

Context: Workflow initiating with the creation of a new
product entry in the TRRS system.

Vendor collects product data sheets and standards references to prepare for submission to
TRRS.

Vendor selects product features from TRRS categories to create a class features list.

Vendor selects standards for asserting product conformance by completing conformance
forms.

Vendor identifies product's interoperability capabilities, completing interoperability
forms.

Vendor establishes linkages to own product information and external documentation.

The product entry is committed to the TRRS system product directory.

The product conformance and interoperability templates are entered into a workflow
queue to solicit the following kinds of TRRS entries (see use cases UC005 and UC006):

Standards Testing

Independent Testing

User Experience Reports

UC004 Extension: Vendor nominates an additional feature
category.

IT-SC 244

UC005 COTS Validation Workflow

Key Actors: Testing Labs, Solution Providers, IT Users,
Product Organizations Context: Workflow initiated when
new conformance statements are asserted.

Conformance statements are sent to independent evaluators, including Testing Labs,
Solution Providers, and IT Users, soliciting test and experience inputs.

1.

Independent laboratory test generates test results, entered in TRRS system as experience
report (see UC003).

Solution providers using the product in systems development submit integration testing
experience reports (UC003).

IT Users submit usability results as experience reports (UC003).

Continue with UC007.

UC006 Interoperability Validation Workflow

Key Actors: Independent Evaluators: IT Users, Testing
Labs, Solution Providers, two or more Product Vendors.

Context: Workflow initiated when new interoperability
statements are asserted.

Interoperability statements are sent to independent evaluators.

Evaluators perform interoperability tests, product integrations, and usability experiments.

Evaluators submit results to the TRRS as experience reports.

Continue with UC007.

Extension (from Step 3 above): Interoperability
Solution

Solution provider or third-party vendor may create an interoperability solution between
two or more products.

The interoperability solution can be registered with the TRRS as a product with these
asserted interoperability statements.

Solution providers can report their level of effort to create the interoperability solution.

UC007 Experience Report Update

Vendor assesses the experience report submissions.

Vendor concurs with each report(See Extensions A and B.)

IT-SC 245

Report is stored and published in TRRS system.

Extension A: Vendor does not concur (as in Step 2 above).

Vendor does not concur with experience report

TRRS returns report to author with comment.

Author modifies report and resubmits. (Resume from Step 2 above.)

Extension B: Deadline Passes

Context: Vendor does not concur

Sixty days pass since vendor has received report without concurring.

Report is stored and published in TRRS system.

A.12 Information Model

This information model is provided for requirements purposes, as identifying the business
classes and their attributes in the Interoperability Clearinghouse business environment.
Note that it does not represent an engineered data model.

The primary business objects in the TRRS system are shown in Figure .8. The
following is a basic description of these objects. TRRS member organizations include
standards groups, independent software vendors (ISV), testing laboratories, and IT users.
Product related services are value-added capabilities provided by TRRS member
organizations, such as testing, systems integration, and value-added reselling. A standard
profile identifies a particular standard (or a user profile of a standard). An operating
environment is a configuration of horizontal products and/or infrastructure products that
enable the utilization of other higher-level products. An experience report is
documentation of the use of a product. A product is a commercial software artifact.

The entities shown in Figure A.9 identify the anticipated information requirements for
the TRRS system. The sections that follow outline preliminary definitions of the
associated information for these TRRS entities. Note that this does not constitute a
normalized or engineered data model. Asterisks indicate fields which are anticipated to
be indexed for the purposes of searching, e.g., primary and foreign keys.

Figure A.8. Key Information Objects and Associations

IT-SC 246

Product Information

Product Name and Version*— The trade name of the product
and the version number. The version number should be detailed and
distinct for each product release.

Release Date— The date of initial general availability of the product.

Organization Name*— The vendor of the product.

Organization URL*— The web site URL of the vendor of the
product.

Product Class— The class of product selected from TRRS
Categories.

Figure A.9. Preliminary Information Requirements

IT-SC 247

Function List— A description of the product features from a
business perspective.

Product Data Sheet— A detailed description of the product from
a technical perspective.

Interface Specification— The external interface specification of
the product.

Operating Environment*— The operating environment which
this product supports.

Interoperates with What Product— Vendor-asserted
interoperability relationships with specific product(s).

Conforms to Standards— Vendor-asserted standards
conformance.

Product Dependencies— Additional products required for this
product to operate.

Is a Part of a Suite— Name of the product suite of which this
product is a member.

Unit Price— Manufacturer retail price for this release.

UML/ADL Functional Specification— Product specification
in terms of Unified Modeling Language and formal specifications.

IT-SC 248

TRRS Status and URL Links

Interoperability Validation— Links to TRRS documents that
are evidence of interoperability between this product and other products.

Standards Conformance Testing— Links to TRRS
documents that are evidence of conformance between this product and
standards.

Usability Testing Awards— Links to TRRS documents that are
evidence of product usability, or awards for usability.

User Implementation Validation— Links to TRRS
documents that are evidence of experience of utilization of this product,
e.g., Experience Reports.

Standard Profile Information

Standard Name— The title phrase that identifies this standard.

Standards Organization— The organization(s) which issue this
standard.

Class— The product class to which this standard applies.

Standard Number and Current Version— The formal
standards number and version numbers of this standards release.

Release Date— The date of initial public availability of this standard.

Standard Function List— A description of the features that are
standardized, explained from a business perspective. Corresponds to the
terminology and keywords used for the Product: Feature List.

UML Specification— The Unified Modeling Language
specification of this standard.

Bibliography— A document bibliography corresponding to this
standard (e.g., including ANSI National Standards Number).

URL or XML Tag— A web site URL or XML description to provide
a referral for more information about this standard.

Standard Price— Cost of obtaining the standards specification.

Reference Implementation or Testing Tool—
 Description of an implementation of the standard which is inexpensively
available as a reference to implementers. Alternatively a description of a
testing tool which can be used to assess conformance of implementations
to the standard, including instructions or contacts on how to obtain the
reference implementation or testing tool.

Approved Testing/Branding Organization*— Cross
reference to a testing organization or branding organization, where a

IT-SC 249

testing organization provides conformance testing as a "product related
service," and/or a branding organization grants trademarks with associated
conformance guarantees.

Conforming Products— Links to products with some level of
conformance to the standard.

Organization Information

Organization Name— Legal or business name of the organization.

Organization Type— Kind of organization as characterized by a
TRRS Category.

Industry— Industrial domain for this organization, e.g.,
manufacturing, telecommunications, etc.

Contact Information— How to contact this organization,
including: principal point of contact, address, phone, fax, and email.

Standards Affliliation— Membership in a standards organization
or organizations.

Service Offerings*— The kinds of services performed, including
"Product Related Services," e.g., conformance testing.

Product Offerings*— The products offered, cross referenced to
"Product" entities.

Experience Reports*— Cross referenced to published experience
reports, registered with the TRRS.

Validation/Awards Information— Description (and cross
reference) to the standards conformance validations or awards received.

Product Related Services Information

Service Name— Name of the service performed.

Service Class— Kind of service.

Organization Name*— Name of the organization performing the
service.

Description— Description of the service performed.

Associated Product Suites— Cross referenced to the product
suites upon which this service is performed.

Contact Information— Instructions and information for how to
request the service.

Pricing— Cost of the service.

IT-SC 250

Contract Vehicles— In-place mechanisms for acquiring the service,
e.g., basic ordering agreements, etc.

TRRS Status and URL Links

Accreditations— Credentials associated with the service.

User Experience Reports— Cross referenced to experience
reports pertaining to this service.

Certifications— Certification credentials relevant to this service.

Experience Report Information

Report Name— Name describing this experience.

Report Type— Kind of report, from TRRS Categories.

Organization Name*— Cross referenced to the organization that
submitted the report.

Product Name— Name of the product(s) addressed by this
experience report.

Environment— Operating-environment context for this experience.

URL Link— Link to the experience report content.

Results and Status— Summary of the experience report outcome.

Operating Environment Information

Operating Platform— Description of the (hardware/software)
platform embodied by this operating environment.

Class— Type of operating environment, e.g., client, server, net-server,
embedded.

Product Name— Name of the product designating this operating
environment.

Device Drivers— Installed device drivers (hardware/software)
required in this operating environment.

Database Runtime— Database products supported in this
operating environment.

Procotol Stack— Networking protocols supported in this operating
environment.

Industry Adoption of Platform— Endorsements for this
operating environment and its components.

A.13 Conclusions

IT-SC 251

This test results reporting system is a case study that demonstrates the applicability of
ODP and UML notation to architecture and prototyping. The diagram literacy that UML
makes possible benefits efforts like the TRRS by making technical documentation
universally understandable. UML supports the application of powerful tools for advanced
software development practices, including: design patterns, OO frameworks, architecture
styles, and components. Combining these UML technologies and practices with Internet
applications makes ambitious concepts like the TRRS feasible. Note that the architecture
does not comprise an engineered design, but does specify details such as information
requirements in a form that is much closer to implementation than ordinary prose
requirements.

IT-SC 252

Appendix B. Design Templates and
Examples

B.1 Conceptual Design

B.2 Relationship Service Conceptual Design

B.3 High-Level Design

B.4 Relationship Service High-Level Design

B.1 Conceptual Design

Conceptual design focuses on high-level issues. It defines the scope and limits of the
design. It looks at issues from different perspectives. It ensures that use cases are handled
naturally and smoothly. It is completed prior to high-level design, detailed design, or
implementation.

Conceptual design documentation provides an overview of a component or service
(utility). It includes the following sections:

Goal

Responsibilities

Architectural level

Classes and objects, class semantics, and class relationships

Description of features, interactions, data types, and constraints

How the design addresses relevant use cases and requirements

Section 1 Goal

The goal is a single, simple, and complete statement that captures the purpose of a
component or service (utility).

Good Example

The trash bag [component] provides people a disposable container for refuse.

Poor Example

The trash bag [component] is used both indoors and outdoors to put refuse in so it can
later be picked up by a garbage truck or taken to a garbage dump.

IT-SC 253

Section 2 Conceptual Overview

The conceptual overview is a one- or two-paragraph statement supporting the goal and
describing what the reader can expect from the remainder of the document.

Example (from Profile Service Conceptual Design)

In addition to information that is intrinsic to a business object (BO), it is useful to find
other related information about the BO that is not part of what defines that object, but is
useful nevertheless. The discovery interface available on these BOs allows one to add and
retrieve such related data by means of the Metadata, Property, Ontology and Relationship
services. However, the absence of a uniform template that tells one what data can be
expected from these services limits their usefulness. It is this template that is provided by
the profiling service in the form of one or more profiles for each type of business object.

Section 3 Responsibilities

Responsibilities describe what a component does or what it keeps track of. They are
listed in order of priority, with more important or larger responsibilities listed first. Each
responsibility must first be captured by a single, simple sentence (not compound with lots
of "ands"). A description including important supporting details should follow. The
description may introduce subconcepts, but not new or super concepts.

Good Example

The Boy Walking Dog [component]

exercises the dog. He does this twice a day.

prevents the dog from running away. He does this by keeping the dog on a leash.

ensures doggie creates waste.

cleans up doggie waste.

Poor Example

The Boy Walking Dog [component]

uses a scooper. This is part of cleaning up after the dog.

walks the dog and learns to whistle. He also picks up a gallon of milk at the store he
passes along the way.

Section 4 Architectural Level[1]

[1] Architectural level is also used to organize documents in the file system

The architectural level is one of the following:

IT-SC 254

Application. The application level encompasses application and session components,
application and session utilities, and user interface classes and utilities.

Domain. The domain level includes vertical domain-specific components and services.

Foundation. The foundation level encompasses common services, such as workflow,
naming or metadata, and core components and data types, such as EiObject and
FormattedDataRep.

For application components, also note whether the component is generic to all domains or
specific to either a single or a limited number of domains.

Section 5 Classes and Objects, Class Semantics and Class
Relationships

This section should contain one or more diagrams (probably not more than three or four)
identifying classes and objects, class semantics and class relationships. Diagrams should
be responsibility oriented, not data oriented. They should show the relationships and
interactions between classes, and class semantics. They should show how classes or class
groupings fulfill responsibilities listed in Section 3.

Each diagram should be accompanied by a sequence of interactions that are taken to
fulfill each responsibility the diagram fulfills.

Diagrams are drawn using Visio or PowerPoint and inserted into a conceptual design
document electronically. Diagrams do not have to follow UML standards. They should be
drawn relatively quickly, and should have just enough detail to illustrate concepts. In
other words, these diagrams should be kept simple.

Example (See Figure B.1)

The boy attaches the leash to the dog and holds it throughout the walk.

The leash restrains the dog throughout the walk.

The dog exercises.

At least one time during the walk, the dog creates waste. This may occur randomly
throughout the walk; however, the walk isn't complete until there is at least one
occurrence.

Following each occurrence of the dog creating waste, the boy operates the scooper.

The scooper picks up and stores the waste.

Section 6 Description of Features, Data Types, and Constraints

Features are fine-grained mechanisms for fulfilling responsibilities. There should be
many more features than responsibilities, and the features should directly support
responsibilities. Data types are supported formats for populating classes. Constraints are
limitations imposed on classes, relationships, and interaction.

IT-SC 255

The detailed description:

Refers to class diagrams where appropriate

Does not address implementation details

Relates each point back to specific classes, objects, or responsibilities

Does not introduce new concepts

Figure B.1. Boy Walking Dog Component Classes

Examples

The boy component has a watch so it knows when to walk the dog

The boy component can bend, allowing it to position the scooper effectively

The leash is made of leather to ensure that the dog can be restrained under any conditions
(for example, if the dog starts to run or jerk)

The dog can exercise at speeds from 0 to 30 mph

The scooper holds 100 cm3 of waste

The scooper may be of type Johnson & Johnson Model B or DuPont Model 52-P412

Section 7 How the Design Addresses Relevant Use Cases and
Requirements

This section references relevant use cases and requirements and their source documents.
No new design concepts are introduced. References to class diagrams and responsibilities
are made where needed to clarify how the component fits in with the use case or
requirements.

Example

IT-SC 256

The Boy Walking Dog component satisfies the following requirements from Use Case
TCP1: Takes Care of Pet in the Family Household System Scope definition documents.

TCP1.2.1 The dog must be exercised twice daily

TCP1.2.2 The dog must create waste when it exercises

TCP1.2.3 The dog must be cleaned up after

B.2 Relationship Service Conceptual Design

Section 1 Goal

Enable the explicit representation of entities and relationships.

Section 2 Conceptual Overview

The Relationship Service allows entities and relationships to be explicitly represented.
Entities are objects. Roles represent objects in a Relationship.

The Relationship Service contains a list of relationship factory objects, each of which
contains relationships of a particular type. Relationships are between object instances and
are dynamically created from Roles. Roles are defined as part of the description of a
relationship and also contain a reference to an object instance and a name for the role
instance within a particular relationship. Relationships are typically the result of dynamic
system processes versus class attributes, which are part of the object's definition.
Relationship types are defined by the processes occurring within a domain model.
Typical relationships include owned-by, responsible-for, part-of, and member-of.

The Relationship Service introduces the concept of RelationshipFactory, which is the
universe of relationship instances that share the same relationship type. A
RelationshipFactory is analogous to a table, where each row constitutes a relationship
instance, and every column can be regarded as a Role. Figure B.2. exemplifies this
analogy.

• Type

Related entities and the relationships themselves are typed. In
the example, the Patient-Doctor relation is a relationship among
two persons. The Patient and Doctor roles constrain their
associated object types to the object type Person.

• The roles of entities in relationships

A RelationshipFactory is defined by a set of roles that entities
have. In the example, a person plays the role of Patient, and
another one plays the role of Doctor. A single entity (i.e., Ms.
Robinson) can have different roles in distinct relationships.

• Degree

IT-SC 257

Degree refers to the number of required roles in a relationship.
In the example, the Patient-Doctor relation is a degree-two
relationship.

• Cardinality

For each role in a relation, the cardinality specifies the maximum
and minimum number of relationships that may involve that role.
In the example, the Patient role may have a minimum cardinality
of one and a maximum cardinality not specified (a doctor may
take care of one or many patients). The Doctor role may have a
minimum and maximum cardinality of one (if a patient can have
only one primary doctor assigned).

Figure B.2. The Patient-Doctor RelationshipFactory Analogy.
Relationships can be characterized along a number of dimensions

• Uniqueness

Uniqueness describes a constraint among roles in a relation that
determines whether the same object name may exist in multiple
roles for a single relationship. In the example, the object Dr.
Garfunkel is unique with respect to a single relationship because
a patient of Dr. Garfunkel cannot assume the role of a doctor
and treat Dr. Garfunkel as a patient.

Section 3 Responsibilities

The Relationship Service is responsible for:

Representing entities and relationships

Managing the life cycle of RelationshipFactories

Managing the life cycle of Relationships

Providing a way to traverse to the related entities

Section 4 Architectural Level

IT-SC 258

Foundation

Section 5 Classes and Objects, Class Semantics, and Class
Relationships

The following classes support the use of the Relationship Service:

RelationshipFactoryFactory

RelationshipFactory

Relationship

Relation: Contains all the Relationship instances of the relationship
type that it defines. Manages the life cycle of a Relationship. Holds the
constraints that a set of objects has to meet in order to participate in the
relationship type.

Relation Factory: Manages the life cycle of a RelationshipFactory.

Relationship: References the related objects.

Role: Holds the constraints that an object has to meet in order to assume
the role.

Role Factory: Manages the life cycle of a Role.

The following structure supports the use of the Relationship Service:

Named Object: Contains the name of the role that the object wants to assume and a
reference to the object.

The scenario shown in Figure B.3 depicts the Relation Creation Process, to illustrate
the interactions among the different classes in the system.

The Create Relation BPO passes the role name and cardinality constraints to the Role
Factory (i.e., Role name = "Doctor," minimum and maximum cardinality = 1).

The Role Factory creates the Role object (i.e., The role Doctor).

The Create Relation BPO sets the type constraints on the Role object (i.e., Adds the
object type Person to the role Doctor).

The Create Relation BPO repeats steps 1–3 for every role in the relation.

The Create Relation BPO passes the relation name and the role objects to the Relation
Factory (i.e., Relation name = "Patient-Doctor," Patient and Doctor roles).

The Relation Factory creates the Relation object (i.e., The Patient-Doctor relation).

The Create Relation BPO sets the relation properties on the Relation object (i.e.,
Specifies that the role Patient is antisymmetric with the role Doctor).

The scenario shown in Figure B.4 depicts the Relationship Establishment Process that
creates a relationship instance between two objects.

IT-SC 259

The Establish Relationship BPO asks the Relation Factory to find a specified relation
(i.e., Find relation "Patient-Doctor").

The Relation Factory retrieves the Relation object (i.e., The Patient-Doctor relation).

The Establish Relationship BPO passes a set of Named Objects to the Relation object
(i.e., {Role name = "Doctor" and a reference to the Person instance Dr. Cheng} and
{Role name = "Patient" and a reference to the Person instance Mr. Lee}).

The Relation object verifies that the passed objects meet the roles (type and cardinality)
and relation (degree and properties) constraints (i.e., Dr. Cheng has to be of the object
type Person).

The Relation object creates the Relationship object that relates the passed objects.

Figure B.3. Relation Creation Process

Figure B.4. Relation Establishment Process

IT-SC 260

Section 6 Description of Features, Data Types, and Constraints

Features

Ability to represent entities as objects.

Ability to represent different types of Relationships.

Ability to represent entities participating in a Relationship as Roles.

Ability to characterize Role constraints within a Relationship.

Create/Delete RelationshipFactories.

Create/Delete Relationships.

Traverse to related objects through Relationship objects and Role constructs.

Data Types

The Roles for a Relationship are defined as a structure to decrease the overall number of
objects which need to be created per relationship. Also, the definition of Role, including
their constraints, and the definition of the Relationship are also modeled as structures.
This is to support the expected usage pattern of retrieving descriptive information to
display a set of related characteristics, as most of the values make little sense in isolation,
i.e., Maximum Cardinality.

struct RoleDef {
 string roleName;
 InterfaceDefSeq allowedTypes;

IT-SC 261

 long minCardinality;
 long maxCardinality;
 boolean uniqueObjectName;
};
typedef sequence <RoleDef> RoleDefSeq;

struct RelationshipDef {
 string relationshipName;
 string relationshipDesc;
 RoleDefSeq roleDefs;
};
typedef sequence <RelationshipDef> RelationshipDefSeq;

struct Role {
 string roleName;
 string objectName;
 CORBA::Object relatedObject;
};
typedef sequence <Role> RoleSeq;

Constraints

An object must be a CORBA::Object in order to participate in a Relationship.

Section 7 How the Design Addresses Relevant Use Cases and
Requirements

The design supports the following requirements stated in the Virtual Hub Requirements
document.

Information Management Requirements

4.4 Photographs will be assigned a role based on the categories listed in Section 4.2
of TEC95

4.9 The user may establish relationships between ground truth data

4.10
The user may establish relationships between ground truth data and products or
documentation

Situational Awareness Requirements
12 The user may associate a geographical feature
12.1 With a Business Object
12.3 With ontology Concepts
Dynamic Linked Documents Requirements
25 Linked Documents
25.3 Embedded objects need to be 'linkable' to other objects.

IT-SC 262

B.3 High-Level Design

High-level design precisely allocates component or service (utility) behaviors and
responsibilities. It also details relationships with other components. Highlevel design is
completed prior to detailed design and implementation.

The high-level design documentation deliverable is a prose document with the following
sections:

Screen Mockups

UML Diagrams

Discovery Interface Use

Component Reuse

Representative Use Cases

Section 1 Screen Mockups

Screen mockups are created for interesting graphical user interfaces. This includes all
interfaces essential to fulfilling component or service responsibilities. Each screen
mockup is accompanied by a decription of input and feedback, and how the view changes
as work progresses.

Section 2 UML Diagrams

Text description of where to find the component, and how to open and close it.

Section 3 Discovery Interface Use

Section 4 Component Reuse

Section 5 Representative Use Cases

B.4 Relationship Service High-Level Design

Section 1 Screen MockUps

The Relationship service will use the Relationship Composer and Relationship Browser
to visualize its contents. The service itself will not have a visual component.

Section 2 Design Considerations

Several issues affected the design. This design overcomes several of the flaws in the
other industry relationship service while avoiding much of the complexity of the previous
relationship service design. The primary capability which existed in the previous version

IT-SC 263

of the relationship which is not included in the new design is the rich set of constraints
(i.e., symmetric, antisymmetric, reflexive, transitive, etc.). There are no plans to include
such constraints in the future, as the value they provide is not worth the increase in
complexity and decrease in understandability of the design.

These were the major issues involved in the design:

There was a desire to limit the number of CORBA objects created to one per relationship
instance. The other relationship services are frequently criticized for requiring the
instantiation of several CORBA objects per relationship instance, which is expensive and
results in poor resource utilization.

A desired feature of the Eidea Labs relationship service was the capability to create new
relationship types dynamically. Few other relationship services currently provide this
capability.

Another feature which was desired was a more straightforward use of the service when
interacting with the Eidea Labs Discovery interface.

CORBA provides very limited support for object equality. This design does not explicitly
address this issue nor does it require objects participating in a relationship to implement
an interface which uniquely identifies an object instance. Flexibility in describing unusual
relationship types was also desired, such as relationships between arbitrary configurations
of groups of objects.

The design needed to adhere to the Eidea Labs architectural principles, including minimal
interfaces, concise abstractions, and reasonable scalability to support large-scale
enterprise systems.

Section 3 Component Reuse

This component will use Objectstore to manage its persistence and Visibroker to manage
its distribution. No other reuse of software is expected.

Section 4 Discovery Interface Use

The Relationship Service defines a class RelationshipBag which is stored inside domain
objects and accessed through the discovery interface. The Relationship service modifies
this class to add relationships to the Relationship bag so they can be accessed by clients
to the business object in order to discover the specific relationships an object instance
participates in.

Section 5 OMG IDL

This completely replaces the Relationship Service IDL which was used in the
Relationship Service implementations.

Complete IDL

IT-SC 264

#include <eiTypes>

module ei {
 module RelationshipService {
 struct Role {
 string roleName;
 string objectName;
 CORBA::Object relatedObject;
 };
 typedef sequence <Role> RoleSeq;

 struct RoleDef {
 string roleName;
 InterfaceDefSeq allowedTypes;
 long minCardinality;
 long maxCardinality;
 };
 typedef sequence <RoleDef> RoleDefSeq;

 struct RelationshipDef {
 string relationshipName;
 string relationshipDesc;
 RoleDefSeq roleDefs;
 boolean uniqueObjectName;
 };
 typedef sequence <RelationshipDef>
RelationshipDefSeq;

 RelationshipFactoryFactory {
 exception CannotCreateRelationshipFactory {};

 RelationshipFactory create(in RelationshipDef
 definition);
 void remove(in RelationshipFactory factory);
 }; // end interface RelationshipFactoryFactory

 exception CardinalityViolation {};
 exception UniquenessViolation {};
 exception ObjectTypeViolation {};
 exception InvalidRole {};
 exception NameMismatch {};

 interface RelationshipFactory {

IT-SC 265

 readonly attribute RelationshipDef
description;

 Relationship create(in RoleSeq roles) raises
(Car-
dinalityViolation,
 UniquenessViolation,
ObjectTypeViolation,
 InvalidRole);
 void remove(in Relationship relationship);
 }; // end interface RelationshipFactory
 interface Relationship {

 readonly attribute RoleSeq roles;
 readonly attribute RelationshipDef
description;

 RoleSeq findRoles(in string objectName)
raises
 (NameMismatch);
 void addRoles(in RoleSeq roles) raises
(Cardinali-
 tyViolation,
 UniquenessViolation,
ObjectTypeViolation,
 InvalidRole);
 void removeRoles(in RoleSeq roles) raises
(Cardi-
 nalityViolation,
 InvalidRole);
 }; // end interface Relationship

 interface RelationshipBag {
 exception NameMismatch { };

 RelationshipSeq find(in string
relationshipName);
 RoleSeq findRoles(in string relationshipName);
 StringSeq getRelationshipTypes();

 // The following two operations are used by the
Relation-
 ship Service to
 // add Relationship reference to object if the
Relation-
 shipBag is available

IT-SC 266

 // through the discovery interface

 void addRelationship(in Relationship
newRelation-
 ship,
 in string objectName) raises (NameMis-
 match);
 void removeRelationship(in Relationship relation-
ship);
 }; // end interface RelationshipBag
 }; // end module RelationshipService
}; // end module ei

Section 6 Population

This effort will define the following three relationship types:

Associated-With

This Relationship is used to model general associations between two objects of any type.
It provides a straightforward one-to-one mapping, can accept objects of any type, and
constrains the two objects to have a different name assigned to their role. The relationship
consists of two roles: Subject and Associated.

Composed-Of

This Relationship is used to associate Spectra objects with other objects, with the
semantics of one object being composed of a set of materials with the corresponding
spectral signatures. It allows up to ten spectra to be associated with an object. There are
two roles, a Subject role, which can be of any object type, and a Material role, which
must be a Spectra object. All of the objects in the relationship must be assigned different
names.

Produced-by

This Relationship is used to associate an object, typically a Feature object, with the
WorkItem or Business Process that created it. The relationship has two roles, the Result
role, which can be of any object type, and a Process role, which must be an object of type
WorkItem or BPO. The process role has a cardinality of exactly one, as does the Result
role. The Result and Process roles must be assigned different names.

Section 7 Representative Use Cases For Event Traces

The following use case will demonstrate the base capability of the Eidea Labs
Relationship Service.

IT-SC 267

VHP3c Associates Geographical Feature

The purpose of this use case is to associate a geographical feature with ancillary
information to provide a more complete description of the feature.

Section 8 Client Profile

The following Java utility class will provide a more convenient, finer-grained access to
the information contained in the Relationship service:

class RelationshipWrapper {
 RelationshipWrapper(RelationshipSeq relationships);
 RelationshipWrapper(ei::component eiObject);
 string Name();
 string[] RoleNames();
 string[][] RoleValues(string[] roleNameList);
 long count();
 long minCardinality(string roleName);
 long maxCardinality(string roleName);
 boolean uniqueName(string roleName);
 string[] allowedTypes(string roleName);
 string[] getObjectName(string roleName);

Figure B.5. Relationship Service

IT-SC 268

 boolean objectPlaysRole(string objectName, string
role-
 Name);
 boolean objectIsParticipant(string objectName);
};

IT-SC 269

Section 9 UML Class Diagrams

The UML class model for the architecture is shown in Figure B.5, on the previous page.
The relationship factory creates relationship objects. These objects are typically
contained in a relationship bag. The factory itself has a factory-factory that supports
independent distributed creation operations throughout the system.

IT-SC 270

Appendix C. Glossary of Software
Architecture Terminology

Glossary

This glossary is a derivative compilation of terms, including
terminology from the Reference Model for Open Distributed Processing
(RM-ODP) [ISO 96]. If the term is viewpoint specific, the viewpoint is
indicated in brackets (for example "[ENTERPRISE]").
Abstraction:

The process of suppressing irrelevant detail to establish a
simplified model, or the result of that process.

Access Transparency:
A distribution transparency which masks differences in data
representation and invocation mechanisms to enable
interworking of objects.

Action:
Something that happens. Every action of interest for modeling
purposes is associated with at least one object.

Activity:
A single-headed directed acyclic graph of actions, where the
occurrence of each action in the graph is made possible by the
occurrence of all immediately preceding actions (i.e., by all
adjacent actions which are closer to the head).

Architecture of a System:
A set of rules that defines the structure of a system and inter-
relationships between its parts.

Behavior of an Object:
A collection of actions with a set of constraints on when they
may occur. The specification language in use determines the
constraints which may be expressed. Constraints may include,
for example, serializability, nondeterminism, concurrency, or
real-time constraints. A behavior may include internal actions.

IT-SC 271

The actions that actually take place are restricted by the
environment in which the object is placed.

Binder [Engineering]:
An engineering object in a channel that instantiates and
maintains a distributed binding between interacting engineering
objects.

Capsule [Engineering]:
A configuration of engineering objects forming a single unit for
the purpose of encapsulation of processing and storage. Virtual
machines and processes are examples of a capsule.

Channel [Engineering]:
A configuration of stubs, binders, protocol objects, and
interceptors providing a binding (connection) between a set of
interfaces to engineering objects, through which interactions can
occur. Bindings that require channels are referred to as
distributed bindings in the engineering language. Bindings that
do not require channels (i.e., between objects in the same
cluster) are referred to as local bindings.

Checkpoint [Engineering]:
An object template derived from the state and structure of an
engineering object that can be used to instantiate another
engineering object, consistent with the state of the original
object at the time of checkpointing.

Class:
The set of all entities satisfying a type.

Cluster [Engineering]:
A configuration of engineering objects forming a single unit of
deactivation, checkpointing, reactivation, recovery, and
migration. A segment of virtual memory containing objects is an
example of a cluster.

Community [Enterprise]:

IT-SC 272

A configuration of (enterprise) objects formed to meet an
objective. The objective is expressed as a contract which
specifies how the objective can be met.

Compliance:
The satisfaction of architectural constraints by a set of
specifications.

Composition of Objects:
A combination of two or more objects yielding a new object, at a
different level of abstraction. The characteristics of the new
object are determined by the objects being combined and by the
way they are combined. The behavior of the composite object is
the corresponding composition of the behavior of the component
objects. The composition of a collection of objects yields an
equivalent object representing the composition. The behavior of
this object is often referred to simply as the behavior of the
collection of objects.

Computational Viewpoint:
The computational viewpoint partitions the system into objects
which interact at interfaces. It enables distribution through
functional decomposition of the system.

Configuration of Objects:
A collection of objects able to interact at interfaces. A
configuration determines the set of objects involved in each
interaction. The concept of interface and the related concept of
interaction are defined terms. From these definitions, the
concept of configuration can be seen to encompass not just a
collection of objects, but also the way in which those objects are
able to interact.

Conformance:
The satisfaction of specification constraints by a system or
product implementation.

Conformance Point:

IT-SC 273

In a specification, a conformance point corresponds to an
architectural reference point. A conformance point is where
behavior may be observed for the purposes of conformance
testing.

Contract:
An agreement governing part of the collective behavior of a set
of objects. A contract specifies obligations, permissions, and
prohibitions for the objects involved. The specifications of a
contract may include:

• a specification of the different roles that objects involved in
the contract may assume;

• the interfaces associated with the roles;

• Quality of Service (QoS) attributes;

• Quality of Protection (QoP) attributes;

• indications of duration or periods of validity;

• indications of behavior which invalidates the contract
(preconditions, postconditions, invariants);

• live-ness and safety conditions.

Contractual Context:
The knowledge that a particular contract is in place and that a
particular behavior of a set of objects is required. An object may
be in a number of contractual contexts simultaneously; the
behavior of that object is constrained by the intersection of the
contractual agreements.

Decomposition of an Object:
The specification of a given object as a composition. As an
example of the above definitions, an object, A, may be
decomposed into a composition of objects, X and Y and Z, and,
conversely, objects X and Y and Z may be composed into the
single object, A.

Distribution Transparency:
An abstraction of the complexity of distribution processing from
particular system users (such as application software

IT-SC 274

developers). The standard distribution transparencies include:
access, failure, location, migration, relocation, replication,
persistence, and transaction. See the corresponding definitions.

Domain:
A set of objects, each of which is related by a characterizing
relationship to a controlling object. Every domain has a
controlling object associated with it. Examples of domains are
Security domains and Management domains.

Dynamic Schema [Information]:
A dynamic schema is a specification of allowable state changes.

Engineering Viewpoint:
The engineering viewpoint focuses on object allocation,
mechanisms, and functions (i.e., services) required to support
distributed interaction between objects in the system.

Enterprise Viewpoint:
The enterprise viewpoint focuses on the purpose, scope, and
policies (obligations, permissions, and prohibitions) of the
system.

Entity:
Any concrete or abstract thing of interest. While in general the
word entity can be used to refer to anything, in the context of
modeling it is reserved to refer to things in the universe of
discourse being modeled.

Environment of an Object:
The part of the model which is not part of that object. The set of
actions associated with an object is partitioned into internal
actions and interactions. An internal action always takes place
without the participation of the environment of the object. An
interaction takes place with the participation of the environment
of the object.

Epoch:

IT-SC 275

A period of time for which an object displays a particular
behavior.

Error:
Part of an object state which is liable to lead to failures; a
manifestation of a fault in an object. Corrective action may
prevent an error from causing a failure.

Failure:
The violation of a contract. The behavior specified in the contract
is, by definition, the correct behavior. A failure is thus a
deviation from compliance with the correct behavior.

Failure Transparency:
A distribution transparency which masks, from an object, the
failure and possible recovery of other objects (or itself), to
enable fault tolerance.

Fault:
A situation that may cause errors to occur in an object. Faults
can be accidental, intentional, physical, man-made, internal,
external, permanent, or temporary.

Federation [Enterprise]:
A community of domains.

Function:
Distributed processing functions are fundamental, widely
applicable services that enable the construction of distributed
processing systems. There are four standard categories of
functions [ISO 96]:

• Management functions: object management, cluster
management, capsule management, node management

• Coordination functions: event notification, checkpointing
and recovery, deactivation and reactivation, group,
replication, migration, engineering interface reference
tracking, transaction

IT-SC 276

• Repository functions: storage, information organization,
relocation, type repository, trading

• Security functions: access control, security audit,
authentication, integrity, confidentiality, nonrepudiation,
key management

Implementation [Technology]:
A process of instantiation whose validity can be subject to test.

Information Viewpoint:
The information viewpoint focuses on the semantics of
information and information processing.

Instantiation of an Object Template:
An object produced from a given object template and other
necessary information. This object exhibits the features specified
in the object template.

Interaction Point:
A location where there exists a set of interfaces. A location is a
position in both space and time.

Interceptor [Engineering]:
An engineering object in a channel located at a boundary
between domains. An interceptor performs checks to enforce or
monitor policies on permitted interactions between engineering
objects in different domains. Interceptors perform
transformations to mask differences in interpretation of data by
engineering objects in different domains. An inter-subnetwork
relay is an example of an interceptor, as are gateways and
bridges.

Interface:
An abstraction of part of the behavior of an object. An interface
comprises a set of interactions and a set of constraints.

Invariant:

IT-SC 277

A predicate that a specification requires to be true for the entire
lifetime of a set of objects.

Invariant Schema [Information]:
A set of predicates on one or more information objects which
must always be true.

Location Transparency:
A distribution transparency which masks the use of information
about location in space when identifying and binding to
interfaces.

Manager:
An engineering object which manages a collection (unit) of
engineering objects. A cluster (capsule) manager is responsible
for managing a single (capsule) cluster of engineering objects.

Migration Transparency:
A distribution transparency which masks, from an object, the
ability of a system to change the location of that object.
Migration is often used to achieve load balancing and reduce
latency.

Mobility Schema:
A specification of constraints on the mobility of an object.

Name:
A term which refers to an entity in a given naming context. A
name identifier is an unambiguous name in a given naming
context.

Naming Context:
A relation between a set of names and a set of entities.

Node [Engineering]:
A configuration of engineering objects forming a single unit for
the purpose of location in space. The node provides a set of

IT-SC 278

processing, storage, and communications functions. Access to
these functions is provided by a nucleus object. A computer and
its software (operating system and applications) is an example of
a node. A node can be a parallel computer under the control of a
single operating system.

Nucleus [Engineering]:
An engineering object which coordinates processing, storage,
and communications functions for other engineering objects
within its node.

Object:
A model of an entity. An object is characterized by its behavior
and, dually, by its state. An object is distinct from any other
object. An object is encapsulated, i.e., any change in its state
can only occur as a result of an internal action or as a result of
an interaction with its environment. An object interacts with its
environment at its interaction points.

Obligation:
A prescription that particular behavior is required. An obligation
is fulfilled by the occurrence of the prescribed behavior.

Operation [Computational]:
An interaction between client and server objects. The syntax of
an operation is usually defined by an operation signature (or
function prototype).

Permission:
A prescription that a particular behavior is allowed to occur. A
permission is equivalent to there being no obligation for the
behavior not to occur.

Persistence:
The property that an object continues to exist across changes of
contractual context of an epoch.

Persistence Schema:

IT-SC 279

A specification of constraints on the use of processing, storage,
and communication functions.

Persistence Transparency:
A distribution transparency which masks, from an object, the
deactivation and reactivation of other objects (or itself).
Deactivation and reactivation are often used to maintain the
persistence of an object when the system is unable to provide it
with processing, storage, and communication functions
continuously.

Policy:
A set of rules related to a particular purpose. A rule can be
expressed as an obligation, a permission, or a prohibition. Not
every policy is a constraint. Some policies represent an
empowerment.

Postcondition:
A predicate that a specification requires to be true immediately
after the occurrence of an action.

Precondition:
A predicate that a specification requires to be true for an action
to occur.

Prohibition:
A prescription that a particular behavior must not occur. A
prohibition is equivalent to there being an obligation for the
behavior not to occur.

Proposition:
An observable fact or state of affairs involving one or more
entities, of which it is possible to assert or deny that it holds for
those entities.

Protocol Object [Engineering]:
An engineering object in a channel that communicates with other
protocol objects in the same channel. Protocol objects achieve

IT-SC 280

interaction between engineering objects which are in different
clusters, capsules, and nodes.

Quality of Protection (QoP):
A set of security requirements on the collective behavior of one
or more objects.

Quality of Service (QoS):
A set of quality requirements on the collective behavior of one or
more objects.

Reference Point:
In an architecture, an interaction point designated for selection
as a conformance point. The conformance point appears in a
specification which is compliant with that architecture.

Refinement:
The process of transforming a specification into a more detailed
specification. Specifications and their refinements typically do
not coexist in the same system description.

Relocation Transparency:
A distribution transparency which masks relocation of an
interface from other interfaces bound to it.

Replication Schema:
A specification of constraints on the replication, availability, and
performance of an object.

Replication Transparency:
A distribution transparency which masks the use of a group of
mutually behaviorally compatible objects to support an interface.
Replication is often used to enhance performance and availability.

Role:

IT-SC 281

Identifier for a behavior, which may appear as a parameter in a
template for a composite object, and which is associated with
one of the component objects of the composite object.

Schema [Information]:
A specification of state, state changes, or constraints. The kinds
of schema include: invariant schema, static schema, dynamic
schema, mobility schema, persistence schema, and replication
schema. See corresponding definitions.

Security—Access Control Function:
Prevents unauthorized interactions with an object.

Security Audit Function:
Provides monitoring and collection of information about security-
related actions, and subsequent analysis of the information to
review security policies, controls, and procedures.

Security—Authentication Function:
Provides assurance of the claimed identity of an object.

Security—Confidentiality Function:
Prevents the unauthorized disclosure of information.

Security—Integrity Function:
Detects and/or prevents the unauthorized creation, alteration, or
deletion of data.

Security—Key Management Function:
Provides facilities for the management of cryptographic keys,
including: key generation, registration, certification,
deregistration, storage, archiving, and deletion.

Security—Nonrepudiation Function:
Prevents the denial by one object involved in an interaction of
having participated in all or part of the interaction.

IT-SC 282

State of an Object:
At a given instant in time, the condition of an object that
determines the set of all sequences of actions in which the object
can take part.

Static Schema [Information]:
A specification of the state of one or more information objects at
some point in time.

Stub [Engineering]:
An engineering object in a channel that interprets the
interactions conveyed by the channel and performs any
necessary transformations or monitoring based on this
interpretation. Stubs are the engineering object in the channel
which interface directly with the client and server objects.

Subtype:
An entity is a subtype of a given type if and only if its properties
satisfy the predicate of the given type and other subtype-specific
predicates.

System:
Something of interest as a whole or as comprised of parts.
Therefore a system may be referred to as an entity. A
component of a system may itself be a system, in which case it
may be called a subsystem. For modeling purposes, the concept
of a system is understood in its general, system-theoretic sense.
The term system can refer to an information processing system
but can also be applied more generally.

Technology Viewpoint:
The technology viewpoint focuses on the choice of technology in
the system.

Template:
The specification of the common features of a collection of
entities in sufficient detail that an entity can be instantiated
using it. For example, an object template is the specification of
the common features of a collection of objects in sufficient detail

IT-SC 283

that an object can be instantiated using it. A object template is
an abstraction of a collection of objects. A template may specify
parameters to be bound at instantiation time. A standards
specification containing interface bindings is a technology object
template.

Transaction Transparency:
A distribution transparency which masks coordination activities
among a configuration of objects to achieve consistency.

Transparency:
The property of hiding from a particular user the potential
behavior of some parts of the system.

Type:
A predicate characterizing a collection of entities. An entity is of
the type (or satisfies the type) if the predicate holds for that
entity. Types needed are (at least) objects, interfaces, and
actions. An entity may have several types and may acquire and
lose types (for example: person, employee, homeowner).

Viewpoint Language:
Definitions of terminology, concepts, and rules for the
specification of a system from a particular viewpoint. The
standard viewpoint languages include: Enterprise Language,
Information Language, Computational Language, Engineering
Language, and Technology Language. See [ISO 96] Part 3 for
details.

Viewpoint of a System:
A form of abstraction achieved using a selected set of
architectural concepts and structuring rules, in order to focus on
particular concerns within a system and its environment.
Viewpoints often represent the perspective of a particular
stakeholder or technical expert involved in the system. The
viewpoint model addresses their issues and concerns. There are
five standard viewpoints of a system: Enterprise, Information,
Computational, Engineering, and Technology. See corresponding
definitions.

IT-SC 284

Appendix D. Acronyms

ACID Atomic, Consistent, Isolated, Durable
AKA also known as
ANSI American National Standards Institute
API Application Program Interface
CASE Computer Aided Software Engineering
CD-ROM Compact Disk Read Only Memory
CIO Chief Information Officer
CMU Carnegie Mellon University
COM Microsoft Component Object Model
CORBA Common Object Request Broker Architecture
COSE Common Open Software Environment
COTS Commercial off-the-shelf
CTO Chief Technology Officer
DARPA Defense Advanced Research Projects Agency
DIN German National Standards Organization
ECMA European Computer Manufacturers Association
E-R Entity-Relationship Modeling
FGDC Federal Geographic Data Committee
FIPS Federal Information Processing Standard
FTP File Transfer Protocol
GOTS Government off-the-shelf
GPL Gamma Pattern Language
HVM Horizontal-Vertical-Metadata
IBM International Business Machines
IC Interoperability Clearinghouse
ICD Interface Control Document
IDL ISO/CORBA Interface Definition Language
IEEE Institute of Electrical and Electronics Engineers
ISO International Standard Organization
ISV Independent Software Vendor
IT Information Technology
MVC Model-View-Controller
O&M Operations and Maintenance
ODMG Object Database Management Group
ODP Open Distributed Processing
OLE Microsoft Object Linking and Embedding
OLTP Online Transaction Processing
OMA Object Management Architecture
OMG Object Management Group

IT-SC 285

ONC Open Network Computing
OO Object-Oriented
OOA Object-Oriented Analysis
OOA&D Object-Oriented Analysis and Design
OOD Object-Oriented Design
OODBMS Object-Oriented Database Management System
OOTS Object-Oriented Technology Symposium
OQL ODMG Object Query Language
OSE Open System Environment
OSF Open Software Foundation
OTG Objective Technology Group
PLoP Pattern Languages of Programs Conference
RFC Request for Comment
RFI Request for Information
RFP Request for Proposal
SEI Software Engineering Institute
SPC Software Productivity Consortium
SQL Structured Query Language
SYSMAN X/Open System Management
TCP/IP Transmission Control Protocol/Internet Protocol
TRRS Test Results Reporting Database
TWIT Third-World Information Systems Troubles
UML Unified Modeling Language
URL Universal Resource Locator
WAIS Wide Area Information Search
URL Universal Resource Locator
WAIS Wide Area Information Search

IT-SC 286

Appendix E. Bibliography

The following sources are cited in the text using the name-date notation, for example,
[Katz 93].

Bibliography

[Adams 96a] Adams, Scott, The Dilbert Principle: A Cubicle's Eye View
of Bosses, Meetings, Management Fads and Other Workplace
Afflictions, Harperbusiness, 1996.
[Adams 96b] Adams, Scott, Dogbert's Top Secret Management
Handbook, Harperbusiness, 1996.
[Adams 97] Adams, Scott, Dilbert Future: Thriving on Stupidity in the
21st Century, Harperbusiness, 1997.
[Akroyd 96] Akroyd, M., "Anti Patterns Session Notes," Object World
West, San Francisco, 1996.
[Alexander 77] Alexander, Christopher, A Pattern Language, Oxford
University Press, 1977.
[Alexander 79] Alexander, Christopher, The Timeless Way of Building,
Oxford University Press, 1979.
[Augarde 91] Augarde, Tony, The Oxford Dictionary of Modern
Quotations, Oxford University Press, 1991.
[Bass 98] Bass, Len; Clements, Paul; Kazman, Rick, Software
Architecture in Practice, Addison Wesley, 1998.
[Bates 96] Bates, M. E., The Online Deskbook Pemberton Press, 1996.
[Beck 96] Beck, K., "Guest Editor's Introduction to Special Issue on
Design Patterns," OBJECT Magazine, SIGS Publications, January 1996.
[Bezier 97] Bezier, B., "Introduction to Software Testing,"
International Conference on Computer Aided Testing, McLean, Virginia,
1997.
[Block 81] Block, P., Flawless Consulting: A Guide to Getting Your
Expertise Used, Pfeiffer & Company, San Diego, 1981.
[Blueprint 97] Blueprint Technologies, "Software Silhouettes," McLean,
Virginia, 1997.
[Booch 96] Booch, Grady, Object Solutions, Addison-Wesley-Longman,
1996.
[Booch 98] Booch, Grady; Jacobson, Ivar; Rumbaugh, James, The
Unified Modeling Language User Guide, Addison Wesley, 1998.
[Brodie 95] Brodie, Michael, Stonebraker, Michael, Migrating Legacy
Systems: Gateways, Interfaces, and the Incremental Approach,
Morgan Kaufmann Publishers, 1995.
[Brooks 79] Brooks, Frederick P., The Mythical Man-Month, Addison-
Wesley, 1979.

IT-SC 287

[Brown 95] Brown, K., "DesignByCommittee," on the Portland Patterns
Repository Web Site, http://c2.com/ppr/index.html
[Brown 98] Brown, W.; McCormick, H.; Malveau, R.; Mowbray, T.,
AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, John Wiley & Sons, 1998.
[Buschmann 96] Buschmann, Frank; Meunier, Regine; Rohnert, Hans;
Sommerlad, Peter; Stal, Michael, Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley & Sons, 1996.
[C4ISR 96] C4I Integration Support Activity, "C4ISR Architecture
Framework," Version 1.0, Integrated Architectures Panel, U.S.
Government Document CISA-0000-104-96,
Washington, DC, June 1996.
[Cargill 89] Cargill Carl F., Information Technology Standardization:
Theory, Process, and Organizations, Digital Press, 1989.
[Cockburn 98] Cockburn Alistair, Surviving Object-Oriented Projects: A
Manager's Guide, Addison-Wesley, 1998.
[Connell 87] Connell J. Rapid Structured Prototyping, Addison-Wesley,
1987.
[Cook 94] Cook S., Daniels, J., Designing Object Systems, Prentice
Hall, 1994.
[Coplien 94] Coplien James O. Object World briefing on Design
Patterns, Hillside, 1994.
[Coplien 99] Coplien James O., Multi-Paradigm Design for C++,
Addison-Wesley, 1999.
[Davis 93] Davis Alan M., Objects, Functions, and States, Prentice Hall,
1993.
[Dolberg 92] Dolberg S. H., "Integrating Applications in the Real
World," Open Information Systems: Guide to UNIX and Other Open
Systems, Patricia Seybold Group, Boston, July 1992.
[D'Souza 98] D'Souza Desmond, Objects, Components, and
Frameworks with UML: The Catalysis Approach, AddisonWesley, 1998.
[Duell 97] Duell M. "Resign Patterns: Ailments of Unsuitable Project-
Disoriented Software," The Software Practitioner, Vol. 7, No. 3 (May–
June 1997), p. 14.
[Foote 97] Foote, Brian, Yoder, Joseph, "Big Ball of Mud," Proceedings
of Pattern Languages of Programming (PLoP '97), 1997.
[Fowler 97] Fowler Martin, Analysis Patterns: Reusable Object Models,
Addison-Wesley, 1997.
[Gamma 94] Gamma E.; Helm R.; Johnson R.; Vlissides J., Design
Patterns, Addison-Wesley, 1994.
[Garlan 95] Garlan David; Allen R.; Ockerbloom J., "Architecture
Mismatch: Why Reuse Is So Hard," IEEE Software, Vol. 12, No. 6 (Nov.
1995), pp. 17–26.

IT-SC 288

[Gilb 93] Gilb, Tom; Graham Dorothy; Finzi Susannah, Software
Inspection, Addison Wesley, 1993.
[Goldberg 95] Goldberg, A., Rubin, K. S., Succeeding with Objects:
Decision Frameworks for Project Management, Addison-Wesley, 1995.
[Griss 97] Griss M., "Software Reuse: Architecture, Process, and
Organization for Business Success," Object World, San Francisco, 1997.
[Halliwell 93] Halliwell C., "Camp Development and the Art of Building
a Market through Standards," IEEE Micro, Vol. 13, No. 6, (Dec. 1993),
pp. 10–18.
[Harmon 96] Harmon Paul, Morrissey William, The Object Technology
Casebook: Lessons from Award-Winning Business Applications, John
Wiley & Sons, 1996.
[Herrington 91] Herrington D., Herrington, S., Meeting Power, The
Herrington Group, Inc., Houston, TX, 1991.
[Hilliard 96] Hilliard, R. Emery, D.; Rice, T., "Experiences Applying a
Practical Architectural Method," in Reliable Software Technologies: Ada
Europe '96, A. Strohmeier, ed., Springer-Verlag, Lecture Notes in
Computer Science, Vol.1088, 1996.
[Horowitz 93] Horowitz B. M., Strategic Buying for the Future, Libbey
Publishing,
Washington, DC, 1993.
[Hutt 94] Hutt A., ed., Object Oriented Analysis and Design, John
Wiley & Sons, 1994.
[ISO 96] International Standards Organization, Reference Model for
Open Distributed Processing, International Standard 10746-1, ITU
Recommendation X.901, 1996.
[Jacobson 91] Jacobson, I., Lindstrom, F., "Reengineering of Old
Systems to an Object-Oriented Architecture," OOPSLA Conference
Proceedings, 1991.
[Jacobson 92] Jacobson I., Object Oriented Software Engineering,
Addison-Wesley, ACM, 1992.
[Jacobson 97] Jacobson I.; Griss M.; Jonsson P., Software Reuse:
Architecture Process and Organization for Business Success, Addison-
Wesley, 1997.
[Jacobson 99] Jacobson Ivar; Booch Grady; Rumbaugh James, The
Unified Software Development Process, Addison Wesley, 1999.
[Johnson 93] Johnson R., "Tutorial on Object-Oriented Frameworks,"
OOPSLA93 Tutorial Notes, Association for Computing Machinery, 1993.
[Johnson 95] Johnson J., "Creating Chaos," American Programmer,
July 1995.
[Katz 93] Katz, M.; Cornwell D.; Mowbray, T. J., "System Integration
with Minimal Object Wrappers," Proceedings of TOOLS 93, August
1993.

IT-SC 289

[Kepner 81] Kepner, C. H., Tregoe, B. B.,The New Rational Manager,
Kepner-Tregoe, Inc., Princeton, NJ, 1981.
[Kitchenham 96] Kitchenham B., Software Metrics, Blackwell
Publishers, 1996.
[Kreindler 95] Kreindler, R. Jordan, Vlissides, John, Object-Oriented
Patterns and Frameworks, Stanford University, August 1995.
[Kruchten 95] Kruchten P. B., "The 4+1 View Model of Architecture,"
IEEE Software, November 1995, pp. 42–50.
[Malveau 97] Malveau, R. C., Mowbray, T. J., CORBA Design Patterns,
John Wiley & Sons, 1997.
[Moore 96] Moore Geoffrey, Crossing the Chasm, Harper Business,
1996.
[Mowbray 95] Mowbray ThomasZahavi Ron, The Essential CORBA,
John Wiley & Sons, 1995.
[Mowbray 97a] Mowbray T.J., "The Seven Deadly Sins of Object-
Oriented Architecture," OBJECT Magazine, March 1997, pp. 22–24.
[Mowbray 97b] Mowbray T.J., "What Is Architecture?" OBJECT
Magazine, Architectures Column, September 1997.
[Moynihan 89] Moynihan T.; McCluskey G.; Verbruggen R., "Riskman1:
A Prototype Tool for Risk Analysis for Computer Software," Third
International Conference on Computer Aided Software Engineering,
London, 1989.
[Opdyke 92] Opdyke W. F., Refactoring Object-Oriented Frameworks,
Ph.D. Thesis, University of Illinois, Urbana, 1992.
[Orfali 96] Orfali, Robert; Harkey, Dan; Edwards, Jeri, The Client-
Server Survival Guide, John Wiley & Sons, 1996. (Also see the third
edition, published in 1999.)
[Ousterhout 98] Ousterhout John A. "Scripting: Higher Level
Programming for the 21st Century," IEEE Computer Magazine, March
1998. http://www.scriptics.com/people/john.ousterhout/scripting.html
[PLoP 94] Proceedings of the First Conference on Pattern Languages of
Programs, August 1994.
[PLoP 95] Proceedings of the Second Conference on Pattern Languages
of Programs, August 1995.
[Polya 71] Polya George, How to Solve It, Princeton University Press,
1971.
[Pree 95] Pree Wolfgang, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995.
[RDA 96] RDA Consultants, "Experiences Using CASE Tools on ROOP
Projects," Tinomium, MD, 1996.
[Rechtin 97] Rechtin, Eberhardt, Maier, Mark, The Art of Systems
Architecting, CRC Press, 1997. (Also see the second edition, published
in 2000.)

IT-SC 290

[Riel 96] Riel A. J., Object-Oriented Design Heuristics, Addison-Wesley,
1996.
[Rising 00] Rising, Linda, Janoff, Norman S., "The Scrum Software
Development Process for Small Teams," IEEE Software, vol. 17, no. 4,
July/August 2000.
[Roetzheim 91] Roetzheim W. H., Developing Software to Government
Standards, Prentice Hall, 1991.
[Rogers 97] Rogers Gregory F., Framework-Based Software
Development in C++, Prentice Hall, 1997.
[Schmidt 95a] Schmidt Douglas, "Using Design Patterns to Develop
Reusable Object-Oriented Communication Software," Communications
of the ACM, October 1995, pp. 65–74.
[Schmidt 95b] Schmidt, Douglas C., Coplien James O., Pattern
Languages of Program Design, Addison-Wesley, 1995.
[Shaw 93] Shaw M., "Software Architecture for Shared Information
Systems," Carnegie Mellon University, Software Engineering Institute,
Technical Report No. CMU/SEI-93-TR-3, ESC-TR-93-180, March 1993.
[Shaw 96] Shaw, Mary, Garlan, David, Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall, 1996.
[Spewak 92] Spewak, S.H., Hill, S.C., Enterprise Architecture Planning,
John Wiley & Sons, 1992.
[Strikeleather 96] Strikeleather J., "The Importance of Architecture,"
OBJECT, Vol. 6, No.2 (April 1996).
[Taylor 92] Taylor D. A., Object-Oriented Information Systems, John
Wiley & Sons, 1992.
[VanGundy 88] VanGundy Arthur B., Techniques of Structured Problem
Solving, Van Nostrand Reinhold, 1988.
[Vlissides 96] Vlissides, John M.; Coplien, James O.; Kerth, Norman L.,
Pattern Languages of Program Design, Addison-Wesley, 1996.
[Walden 95] Walden, Kim, Nerson, Jean-Marc, Seamless Object-
Oriented Software Architecture, Prentice Hall, 1995.
[Webster 95] Webster Bruce F., Pitfalls of Object-Oriented
Development, M & T Books, 1995.
[Wirfs-Brock 90] Wirfs-Brock, Rebecca; Wilkerson, Brian; Weiner,
Lauren, Designing Object-Oriented Software, Prentice Hall, 1990.
[Yourdon 93] Yourdon, Edward, "Software Reusability," The Decline
and Fall of the American Programmer, Prentice Hall, 1993.
[Zachman 97] Zachman, John A.; Inmon, William H.; Geiger, Jonathan
G., Data Stores, Data Warehousing, and the Zachman Framework:
Managing Enterprise Knowledge, McGraw Hill, 1997.

	Software Architect Bootcamp
	Introduction
	Thanks
	Table of contents
	Preface
	Acknowledgments
	Chapter 1 Introduction
	1.1 Advice for Software Architects
	1.2 Software Architecture as a Discipline
	1.3 Design Patterns and Software Architecture
	1.4 Conclusions
	1.5 Exercises

	Chapter 2 Software Architecture: Basic Training
	2.1 Software Paradigms
	2.2 Open Systems Technology
	2.3 Client Server Technology
	2.4 Software Application Experience
	2.5 Technology and Application Architecture
	2.6 Applying Standards to Application Systems
	2.7 Distributed Infrastructures
	2.8 Conclusions
	2.9 Exercises

	Chapter 3 Software Architecture: Going to War
	3.1 Software Architecture Paradigm Shift
	3.2 Doing Software Wrong
	3.3 Doing Software Right: Enterprise Architecture Development
	3.4 Bottom Line: Time, People, and Money
	3.5 Conclusions
	3.6 Exercises

	Chapter 4 Software Architecture: Drill School
	4.1 Architecture versus Programming
	4.2 Managing Complexity Using Architecture
	4.3 Systems Integration
	4.4 Making the Business Case
	4.5 Architecture Linkage to Software Development
	4.6 Architectural Software Notation
	4.7 Conclusions
	4.8 Exercises

	Chapter 5 Leadership Training
	5.1 Leadership Is a Necessary, Learnable Skill
	5.2 The Architect as Team Builder
	5.3 Always Insist on Excellence in Deliverables
	5.4 Architect's Walkthrough
	5.5 Conclusions
	5.6 Exercises

	Chapter 6 Software Architecture: Jump School
	6.1 Process
	6.2 Creating New Processes
	6.3 Teamwork
	6.4 Conclusions
	6.5 Exercises

	Chapter 7 Communications Training
	7.1 Communications Challenges
	7.2 Responsibility–Driven Development
	7.3 Communication Responsibilities
	7.4 Handling Feedback
	7.5 Exercises

	Chapter 8 Software Architecture: Intelligence Operations
	8.1 Architecture Mining
	8.2 Architecture Iteration
	8.3 Architecture Judgment
	8.4 Conclusions
	8.5 Exercises

	Chapter 9 Software Architecture: Psychological Warfare
	9.1 Alternative Learning
	9.2 Internal Control
	9.3 Expectation Management
	9.4 Psychology of Truth
	9.5 Perception Is Not Reality
	9.6 Exploiting Human Weaknesses
	9.7 Example: Reference Selling
	9.8 Psychology of Ownership
	9.9 Psychological Akido
	9.10 Intellectual Akido
	9.11 Conclusions
	9.12 Exercises

	Appendix A. Architecture Example: Test Results Reporting System
	A.1 Introduction
	A.2 Component Interoperability Challenge
	A.3 Target Architecture for the TRRS
	A.4 Target Enterprise Viewpoint
	A.5 Target Information Viewpoint
	A.6 Target Technology Viewpoint
	A.7 Prototype Implementation
	A.8 Prototype Computational Viewpoint
	A.9 TRRS Terminology
	A.10 Use Case Definitions
	A.11 Core Workflows
	A.12 Information Model
	A.13 Conclusions

	Appendix B. Design Templates and Examples
	B.1 Conceptual Design
	B.2 Relationship Service Conceptual Design
	B.3 High-Level Design
	B.4 Relationship Service High-Level Design

	Appendix C. Glossary of Software Architecture Terminology
	Appendix D. Acronyms
	Appendix E. Bibliography

