
sun@hit.edu.cn

Memory Management

Chapter 4

4.1 Basic memory management
4.2 Swapping
4.3 Virtual memory
4.4 Page replacement algorithms
4.6 Design issues for paging systems
4.7 Implementation issues
4.8 Segmentation

sun@hit.edu.cn

Memory Management
• Ideally programmers want memory that

is
– large
– fast
– non volatile

• Memory hierarchy
– small amount of fast, expensive memory – cache
– some medium-speed, medium price main memory
– gigabytes of slow, cheap disk storage

• Memory manager handles the memory
hierarchy

sun@hit.edu.cn

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory
- an operating system with one user process

sun@hit.edu.cn

Multiprogramming with Fixed Partitions

• Fixed memory partitions
– separate input queues for each partition
– single input queue

sun@hit.edu.cn

Relocation and Protection

• Cannot be sure where program will be loaded in
memory
– address locations of variables, code routines cannot be

absolute
– must keep a program out of other processes’ partitions

• Use base and limit values
– address locations added to base value to map to physical

address
– address locations larger than limit value is an error

sun@hit.edu.cn

Swapping (交换)

Memory allocation changes as
– processes come into memory
– leave memory

Shaded regions are unused memory

sun@hit.edu.cn

Swapping (2)

• Allocating space for growing data segment
• Allocating space for growing stack & data segment

sun@hit.edu.cn

Memory Management with Bitmaps

• Part of memory with 5 processes, 3 holes
– tick marks show allocation units
– shaded regions are free

• Corresponding bitmap
• Same information as a list

sun@hit.edu.cn

Memory Management with Linked Lists

Four neighbor combinations for the terminating process X

sun@hit.edu.cn

Memory Allocation Algorithm
• First fit

– Use the first hole that is big enough in the list
• Next fit

– Start searching the list from the place where it left
off last time

• Best fit
– Search the entire list and takes the smallest hole that

is adequate
• Worst fit

– Always take the largest available hole
• Quick fit

– Maintain separate lists

sun@hit.edu.cn

Virtual Memory

• Overlays
– Split the program into pieces

• Virtual memory
– The OS keeps those parts of the program

currently in use in main memory, and the
rest on the disk

sun@hit.edu.cn

Paging (1)

The position and function of the MMU

sun@hit.edu.cn

Paging (2)
The relation between
virtual addresses and
physical memory
addresses given by
page table

MOV REG, 0
MOV REG, 8192
MOV REG, 20500
MOV REG, 32780

sun@hit.edu.cn

Page Tables (1)

Internal operation of MMU with 16 4 KB pages

sun@hit.edu.cn

Page Tables (2)

• 32 bit address with 2 page table fields
• Two-level page tables

Second-level page tables

Top-level
page table

sun@hit.edu.cn

Page Tables (3)

Typical page table entry

sun@hit.edu.cn

TLBs – Translation Lookaside
Buffers (转换检测缓冲器)

A TLB to speed up paging

sun@hit.edu.cn

Inverted Page Tables

Comparison of a traditional page table with an inverted page table

sun@hit.edu.cn

Page Replacement Algorithms

• Page fault forces choice
– which page must be removed
– make room for incoming page

• Modified page must first be saved
– unmodified just overwritten

• Better not to choose an often used page
– will probably need to be brought back in soon

sun@hit.edu.cn

Optimal Page Replacement
Algorithm

• Replace page needed at the farthest point
in future
– Optimal but unrealizable

• Estimate by …
– logging page use on previous runs of process
– although this is impractical

sun@hit.edu.cn

Not Recently Used Page Replacement
Algorithm

• Each page has Reference bit, Modified bit
– bits are set when page is referenced, modified

• Pages are classified
1. not referenced, not modified
2. not referenced, modified
3. referenced, not modified
4. referenced, modified

• NRU removes page at random
– from lowest numbered non empty class

• NRU is easy to understand, moderately
efficient to implement, and gives an adequate
performance

sun@hit.edu.cn

FIFO Page Replacement
Algorithm

• Maintain a linked list of all pages
– in order they came into memory

• Page at beginning of list replaced

• Disadvantage
– page in memory the longest may be often

used

sun@hit.edu.cn

Second Chance Page Replacement Algorithm

• Operation of a second chance
– pages sorted in FIFO order
– Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)

sun@hit.edu.cn

The Clock Page Replacement Algorithm

sun@hit.edu.cn

Least Recently Used (LRU)
• Assume pages used recently will used again

soon
– throw out page that has been unused for longest

time

• Must keep a linked list of pages by software
– most recently used at front, least at rear
– update this list every memory reference !!

• Alternatively keep counter in each page table
entry by hardware
– choose page with lowest value counter
– periodically zero the counter

sun@hit.edu.cn

A Second Hardware LRU

LRU using a matrix – pages referenced in
order 0,1,2,3,2,1,0,3,2,3

sun@hit.edu.cn

Simulating LRU in Software
NFU and Aging

• The aging algorithm simulates LRU in software
• Note 6 pages for 5 clock ticks, (a) – (e)

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (1)

• Demand paging
– pages are loaded only on demand, not in

advance
• Locality of reference

– the process references only a relatively small
fraction of its pages

• Working set
– the set of pages that a process is currently

using

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (2)

• The working set is the set of pages used by the k
most recent memory references

• w(k,t) is the size of the working set at time, t

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (3)

The working set algorithm

sun@hit.edu.cn

The WSClock Page Replacement Algorithm

1

4

sun@hit.edu.cn

Review of Page Replacement Algorithms

sun@hit.edu.cn

Design Issues for Paging Systems
Local versus Global Allocation Policies

a) Original configuration
b) Local page replacement
c) Global page replacement

sun@hit.edu.cn

Page Fault Frequency (PFF)

Page fault rate as a function of the number
of page frames assigned

sun@hit.edu.cn

Load Control

• Despite good designs, system may still thrash
• When PFF algorithm indicates

– some processes need more memory
– but no processes need less

• Solution :
Reduce number of processes competing for
memory
– swap one or more to disk, divide up pages they held
– reconsider degree of multiprogramming

sun@hit.edu.cn

Page Size (1)

Small page size
• Advantages

– less internal fragmentation
– better fit for various data structures, code

sections
– less unused program in memory

• Disadvantages
– programs need many pages, larger page tables
– waste swapping time

sun@hit.edu.cn

Page Size (2)

• Overhead due to page table and internal
fragmentation

• Where
– s = average process size in bytes
– p = page size in bytes
– e = page entry

2
s e poverhead
p
⋅

= +

page table space

internal
fragmentation

Optimized when

2p se=

sun@hit.edu.cn

Separate Instruction
and Data Spaces

• One address space
• Separate I and D spaces

sun@hit.edu.cn

Shared Pages

Two processes sharing the same program sharing its page table

sun@hit.edu.cn

Cleaning Policy

• Need for a background process, paging
daemon
– periodically inspects state of memory

• When too few frames are free
– selects pages to evict using a replacement

algorithm
• It can use same circular list (clock)

– as regular page replacement algorithm but with
diff ptr

sun@hit.edu.cn

Implementation Issues
Operating System Involvement with Paging

Four times when OS involved with paging
• Process creation

– determine program size
– create page table
– initialize swap area

• Process execution
– MMU reset for new process
– TLB flushed

• Page fault time
– determine virtual address causing fault
– swap target page out, needed page in

• Process termination time
– release page table, pages, disk space
– shared pages can only be released by the last process using them

sun@hit.edu.cn

Page Fault Handling
• Hardware traps to kernel
• General registers saved
• OS determines which virtual page needed
• OS checks validity of address, seeks page frame
• If selected frame is dirty, write it to disk
• OS brings schedules new page in from disk
• Page tables updated
• Faulting instruction backed up to when it began
• Faulting process scheduled
• Registers restored
• Program continues

sun@hit.edu.cn

Locking Pages in Memory

• Virtual memory and I/O occasionally interact
• Proc issues call for read from device into buffer

– while waiting for I/O, another processes starts up
– has a page fault
– buffer for the first proc may be chosen to be paged

out

• Solutions
– need to specify some pages locked
– do all I/O to kernel buffer then copy data to pages

sun@hit.edu.cn

Backing Store

(a) Paging to static swap area
(b) Backing up pages dynamically

sun@hit.edu.cn

Segmentation (1)

• One-dimensional address space with growing tables
• One table may bump into another

sun@hit.edu.cn

Segmentation (2)

Allows each table to grow or shrink, independently

sun@hit.edu.cn

Segmentation (3)

Comparison of paging and segmentation

sun@hit.edu.cn

Implementation of Pure
Segmentation

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction

sun@hit.edu.cn

Segmentation with Paging: MULTICS (1)

• Descriptor segment points to page tables
• Segment descriptor – numbers are field lengths

sun@hit.edu.cn

Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address

sun@hit.edu.cn

Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory address

sun@hit.edu.cn

Segmentation with Paging: MULTICS (4)

• Simplified version of the MULTICS TLB
• Existence of 2 page sizes makes actual TLB more complicated

sun@hit.edu.cn

Segmentation with Paging: Pentium
• The Pentium has

– 16K independent segments, each up to 1G
32-bit words

– two tables:
• LDT (Local Descriptor Table)
• GDT (Global Descriptor Table)

• Load selectors for the segments into the
machine's six segment registers

sun@hit.edu.cn

A Pentium selector

• The value of the selector can not be zero

sun@hit.edu.cn

Pentium code segment descriptor

• Data segments descriptor differ slightly

sun@hit.edu.cn

Conversion of a (selector, offset) pair
to

a linear address

sun@hit.edu.cn

Mapping of a linear address onto a
physical address

sun@hit.edu.cn

If you only need paging
• Set up all the segment registers with the

same selector
• The selector’s descriptor has Base=0 and

Limit set to the maximum
• The instruction offset will then be the

linear address
• All current operating systems for the

Pentium work this way besides OS/2
• How about need segmentation only?

sun@hit.edu.cn

Protection on the Pentium

Level

