Chapter 4

Memory Management

4.1 Basic memory management

4.2 Swapping

4.3 Virtual memory

4.4 Page replacement algorithms

4.6 Design issues for paging systems
4.7 Implementation issues

4.8 Segmentation

sun@hit.edu.cn

Memory Management

* ldeally programmers want memory that
IS
— large
— fast
— non volatile

 Memory hierarchy
— small amount of fast, expensive memory — cache
— some medium-speed, medium price main memory
— gigabytes of slow, cheap disk storage
 Memory manager handles the memory
hierarchy

sun@hit.edu.cn

Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(a) (b) ()

Three simple ways of organizing memory
- an operating system with one user process

Multiprogramming with Fixed Partitions

Multiple
input queues 800K
[H - Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
Input queue
400K
D— Partition 2 Partition 2
200K
[H H | Partition 1 Partition 1
- 100K .
Operating Operating
system 0 system

(a) (b)

* Fixed memory partitions
— separate input queues for each partition
— single Input queue

Relocation and Protection

e Cannot be sure where program will be loaded in
memory

— address locations of variables, code routines cannot be
absolute

— must keep a program out of other processes’ partitions

e Use base and limit values

— address locations added to base value to map to physical
address

— address locations larger than limit value is an error

sun@hit.edu.cn

Swapping (32 #z)

Time —

% 7 0 iz i iz, e
/ / C C C c &
%
// B B B B 7//
/ s L A
N~V » | 2 V2222
// D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system
(b) (c) (d) (e) (f) (9)

Memory allocation changes as

— processes come into memory
— leave memory

Shaded regions are unused memory

Swapping (2)

B-Stack
r Room for growth ~ |-——--- [A
t \ } Room for growth
B-Data
B + Actually in use
B-Program
% / , 7 /A
A-Stack
r Room for growth ~ f----- L A
t \ } Room for growth
A-Data
A * Actually in use
A-Program
Operating Operating
system system

(a) (b)

« Allocating space for growing data segment
 Allocating space for growing stack & data segment

Memory Management with Bitmaps

£
7 % 2
////// IIIBII ICI;I //I/% II?II IM {:j
16 24 ’
(a)
11111000 Plo|5|] 4+—=|H|5|3| +—|P|8 ——| P [14]| 4 |
11111111)
11001111 C
11111000 ;11¢8:;_;\——hP206 ——-*I;ZS ——>|H[29]| 3| X
T ¥ Hole Starts Length Process

(b)

at 18

2

e Part of memory with 5 processes, 3 holes

— tick marks show allocation units

— shaded regions are free
e Corresponding bitmap

e Same Iinformation as a list

Memory Management with Linked Lists

Before X terminates After X terminates

@| A | x | B becomes A 7] B
b | A | X W becomes W
©] x | B becomes /] B
O A x W74 veeomes 7777777

Four neighbor combinations for the terminating process X

sun@hit.edu.cn

Memory Allocation Algorithm

First fit
— Use the first hole that is big enough in the list

Next fit

— Start searching the list from the place where it left
off last time

Best fit

— Search the entire list and takes the smallest hole that
IS adequate

Worst fit
— Always take the largest available hole

Quick fit
— Maintain separate lists

sun@hit.edu.cn

Virtual Memory

e Overlays
— Split the program into pieces
e Virtual memory

— The OS keeps those parts of the program
currently in use In main memory, and the
rest on the disk

sun@hit.edu.cn

Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1>
/ Memory \ Disk
_ management emory controller
unit

T T.

The MMU sends physical
addresses to the memory

The position and function of the MMU

sun@hit.edu.cn

Paging (2)

Virtual
address
) space
The relation between sokeax [x
virtual addresses and ~ ssk-eok| X |} vitualpage
. 52K-56K X
physical memory ssksok X
addresses given by darcaskl 7
40K-44K X _
page table 36K-40K [5 ey
32K-36K X address
28K-32K X 28K-32K
MOV REG, O 24K-28K | X 24K-28K
20K-24K 3 20K-24K
MOV REG ’ 8192 16K-20K | 4 - 16K-20K
12K-16K 0 \ 12K-16K
MOV REG, 20500 8K-12K |6 BK-12K
4K-8K 1 < 4K-8K
MOV REG, 32780 I e Y h\om
sun@hit.edu.cn Page frame

Page Tables (1)

+ Outgoing
[o] [o]oo[o[o[o]o[o[[o[o] physical
] i (24580)
15| 000 0
14| 000 0
13| 000 0
12| 000 0
11 111 1
10| 000 0
ol 1o 1 12-bit offset
-bi
Page 8] 909 10 copled drertiy
table 7[000 |0 from input
6| 000 | O to output
5 011 1
41 100 |1
3| 000 1
2[110 [1] 110 |
1| 001 1 - .
resen
Q) 10i0 L fabsem bit
Virtual page = 2 is used
as an index into the
page table [r;rcion'lling
A virtiua
[ofo[1]ofofoofofofofo]o[of1]o]o0] f‘gfgg;‘s

Internal operation of MMU with 16 4 KB pages

Page Tables (2)

Second-level page tables

-+ | Page
—— | table for
1 » [the top
. | 4Mof
- , | memory
-
Top-level 4
page table
f’--__‘____’
o ——
Bits 0 -
PT. 4 S
3 S
(a) e
1 -
0 -..,\ ~
1023
6 1
5 —
4 Ju
1 . To
1 ,. Page
1 I
1] S

o 32 bit address with 2 page table fields
« Two-level page tables,gnitedu.cn

Page Tables (3)

Caching
disabled Modified Present/absent

[/ /

7//% | | | Page frame number

N\

Referenced Protection

Typical page table entry

sun@hit.edu.cn

TLBs — Translation Lookaside

Buffers (4% kil 22 4%)
Valid | Virtual page | Modified | Protection | Page frame

1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging

sun@hit.edu.cn

Inverted Page Tables

table with an entry
for each of the 252
pages

252 1

Fa'

o
pt”

)
\

256-MB physical
memory has 216
4-KB page frames Hash table

216 -1 216 -1 T m—

~ N ~~
~ ~ ~

e |]
0 T 0 oT S— I |
Indexed Indexed / \

by virtual by hash on Virtual Page
page virtual page page frame

~Ls
Fa

\

Comparison of a traditional page table with an inverted page table

sun@hit.edu.cn

Page Replacement Algorithms

o Page fault forces choice

— which page must be removed
— make room for incoming page

 Modified page must first be saved
— unmodified just overwritten

e Better not to choose an often used page
— will probably need to be brought back in soon

sun@hit.edu.cn

Optimal Page Replacement
Algorithm

* Replace page needed at the farthest point
In future

— Optimal but unrealizable

e Estimate by ...
— logging page use on previous runs of process
— although this is impractical

sun@hit.edu.cn

Not Recently Used Page Replacement
Algorithm

Each page has Reference bit, Modified bit
— bits are set when page Is referenced, modified

Pages are classified

1. not referenced, not modified
>, hot referenced, modified

;. referenced, not modified

.. referenced, modified

NRU removes page at random
— from lowest numbered non empty class

NRU is easy to understand, moderately
efficient to implement, and gives an adequate
performance

sun@hit.edu.cn

FIFO Page Replacement
Algorithm

 Maintain a linked list of all pages
— In order they came into memory

e Page at beginning of list replaced

e Disadvantage

— page in memory the longest may be often
used

sun@hit.edu.cn

Second Chance Page Replacement Algorithm

Page loaded first
\o 3 7 8 12 14 15 18

A B C D E F G H

Most recently
o loaded page

A is treated like a
T newly loaded page

* Operation of a second chance

— pages sorted in FIFO order

— Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

The Clock Page Replacement Algorithm

When a page fault occurs,
the page the hand is
J 5 pointing to is inspected.

The action taken depends
on the R bit:
R = O: Evict the page
R = 1: Clear R and advance hand

sun@hit.edu.cn

|_east Recently Used (LRU)

o Assume pages used recently will used again
soon

— throw out page that has been unused for longest
time

 Must keep a linked list of pages by software
— most recently used at front, least at rear
— update this list every memory reference !!

o Alternatively keep counter in each page table
entry by hardware

— choose page with lowest value counter
— periodically zero the counter

sun@hit.edu.cn

A Second Hardware LRU

Page
1

Page Page Page
OfO0fO0|O

1

Page

3

0 2

3

2
0j]o0f0O0|O

3

2
0

3

0 2

3

2

0l0|0}|O

0l0|JO0]|O

0l0|0]|O

ojo|1o0|o

1

210101010

3/]0|10]0]O

(e)

(d)

(c)

(b)

(@)

0OlO0|O0|O

0OjJ]O0fO0}|O

0l0|J0O0}|O

1

0l10]O

0l]0|J0]|O

1

0

0
0

0|00 |O

(i)

(i)

(h)

(f)

LRU using a matrix — pages referenced In

order0,1,2,3,2.1,0,3,2.3

| 1 | |
R bits for l R bits for ' R bits for I R bits for : R bits for
pages 0-5, | pages 0-5, i pages 0-5, | pages 0-5, I pages 0-5,
clock tick 0 ! clock tick 1 : clock tick 2 I clock tick 3 : clock tick 4
|] | |
ol1]o]1 i 1]o|o]1 i 1lof1]o i ololo]|1 i 1|1|olo]o

l | l I
| I | |
Page l : : :
|] | |

o| 10000000 |1 | 11000000 | i [11100000 || 11110000 |1 | 01111000
I 1 | |
| I | |

1| 00000000 i 10000000 i 11000000 i 01100000 i 10110000
I I | |
|] | |

2| 10000000 i 01000000 i 00100000 i 00100000 i 10001000
|] | |
|] | |

3 00000000 i 00000000 i 10000000 i 01000000 i 00100000
|] | |
I 1 | |

4 10000000 : 11000000 : 01100000 | 10110000 : 01011000
|] | |
I 1 | |
| I | |

5| 10000000 ! 01000000 : 10100000 ! 01010000 ! 00101000
| I | |

Simulating LRU In Software

NFU and Aging

(a)

(b)

(c)

(d)

(e)

* The aging algorithm simulates LRU in software
* Note 6 pages for 5 clock ticks, (a) — (e)

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (1)

 Demand paging

— pages are loaded only on demand, not In
advance

 |Locality of reference

— the process references only a relatively small
fraction of its pages

* Working set

— the set of pages that a process Is currently
using

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (2)

wi(k.t)

k

* The working set is the set of pages used by the k
most recent memory references

o w(k,1) Is the size of the working set at time, t

sun@hit.edu.cn

The Working Set Page Replacement Algorithm (3)

| 2204 | Current virtual time

Information about {
one page

2084

R (Referenced) bit
| 1/

2003

1

Time of last use —

— 1980

1

Scan all pages examining R bit:

if (R == 1)

1213

set time of last use to current virtual time

Page referenced

[0
—A

during this tick

2014

1

if (R ==0 and age > 1)

2020

1

remove this page

2032

1

if (R == 0 and age < 1)

Page not referenced

.

remember the smallest time

during this tick

1620

0

Page table

The working set algorithm

sun@hit.edu.cn

The WSClock Page Replacement Algorithm

2204 | Current virtual time

1620[0 1620[0
2084]1 20321 20841 2032]1
20031 \ 2020]1 2003]0 2020[1
1980 |1 2014[1 1980 [0 2204]0
1213]0 T) 1213]0
) R bit
Time of
last use
{a) (b)
1620[0 1620[0
20841 2032[1 2084[1 2032][1
2003[1 2020[1 2003[1 2020]1
1980 [1 2014[1 1980 [1 2014]0
1213]0 22041 |
New page
{c) (d)

sun@hit.edu.cn

Review of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

sun@hit.edu.cn

Design Issues for Paging Systems
L_ocal versus Global Allocation Policies

Age
A0 10 A0 A0
A1 7 A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 8 C1 C1
c2 5 c2 c2
C3 6 C3 C3
(@) (b) (c)

a) Original configuration
b) Local page replacement
c) Global page replacement

Page Fault Frequency (PFF)

Page faults/sec

Number of page frames assigned

Page fault rate as a function of the number
of page frames assigned

sun@hit.edu.cn

_oad Control

e Despite good designs, system may still thrash

 When PFF algorithm indicates
— Some processes need more memory
— but no processes need less

e Solution:

— swap one or more to disk, divide up pages they held
— reconsider degree of multiprogramming

sun@hit.edu.cn

Page Size (1)

Small page size

o Advantages
— less internal fragmentation

— better fit for various data structures, code
sections

— less unused program in memory
e Disadvantages

— programs need many pages, larger page tables
— waste swapping time

sun@hit.edu.cn

Page Size (2)

e Overhead due to page table and internal

fragmentat

« Where Overhead

— s =average pr

Tolg

page table space

0Cess size In bytes

— P = page size in bytes

— e = page entry

sun@hit.edu.cn

Internal
~ | fragmentation

Optimized when

P =+/25€

Separate Instruction
and Data Spaces

Single address

space | space D space
032 032
} Unused page
Data <
> Data
AVAY AV VAV WAV LAWY, EVAY AV AV AV A VAL
Program ¢ RXXXXXKXKS Program { XHIRRRKS
L O

* One address space
e Separate | and D spaces

sun@hit.edu.cn

Shared Pages

[111

\
Process
table
Program Data 1 Data 2
lec J
VT
Page tables

Two processes sharing the same program sharing its page table

sun@hit.edu.cn

Cleaning Policy

* Need for a background process, paging

daemon

— periodically inspects state of memory

 When too few frames are free
— selects pages to evict using a replacement

algorithm

|t can use same circular list (clock)
— as regular page replacement algorithm but with

diff ptr

sun@hit.edu.cn

Implementation Issues

Operating System Involvement with Paging

Four times when OS involved with paging

e Process creation
— determine program size
— Create page table
— Initialize swap area
e Process execution
— MMU reset for new process

- TLB flushed 9 QI

» Page fault time <2{ I
— determine virtual address causing fault W“ I
— swap target page out, needed page In (§\[|%

e Process termination time ﬁ%%
— release page table, pages, disk space

— shared pages can only be released by the last process using them

sun@hit.edu.cn

Page Fault Handling

Hardware traps to kernel

General registers saved

OS determines which virtual page needed

OS checks validity of address, seeks page frame
If selected frame is dirty, write it to disk

OS brings schedules new page in from disk
Page tables updated

Faulting instruction backed up to when it began
Faulting process scheduled

Registers restored

Program continues

sun@hit.edu.cn

Locking Pages in Memory

 Virtual memory and I/O occasionally interact

* Proc issues call for read from device into buffer
— while waiting for 1/0O, another processes starts up
— has a page fault

— buffer for the first proc may be chosen to be paged
out

o Solutions
— need to specify some pages locked
— do all 1/0O to kernel buffer then copy data to pages

sun@hit.edu.cn

Backing Store

Disk

Swap area

a)

(a) Paging to static swap area

(b) Backing up pages dynamically

sun@hit.edu.cn

Segmentation (1)

Virtual address space

Call stack *
} Free
Address space ,
Space currently being
llocated to th
Ea?scs ’tereeo ° { Parse tree } used by the parse tree

Constant table 1&

Source text +

Symbol table has

Symbol table bumped into the
source text table

* One-dimensional address space with growing tables
e One table may bump into another

20K

16K

12K

8K

4K

oK

Allows each table to grow or shrink, independently

sun@hit.edu.cn

Segment

Segmentation (2)

12K

8K

4K

oK

Segment

oK

Constants

Segment
2

16K

12K

8K

4K

oK

— Parse
tree

Segment

3

12K

8K

4K

oK

Segment

Segmentation (3)

Consideration Paging Segmentation

Need the programmer be aware No Yes

that this technique is being used?

How many linear address 1 Many

spaces are there?

Can the total address space Yes Yes

exceed the size of physical

memory?

Can procedures and data be No Yes

distinguished and separately

protected?

Can tables whose size fluctuates No Yes

be accommodated easily?

Is sharing of procedures No Yes

between users facilitated?

Why was this technique To get a large To allow programs

invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and

protection

Comparison of paging anc

segmentation

Segmentation

Implementation of Pure

%
Segment 4 Segment 4 ////
(7K) (7K) Segment 5 Segment 5 (1OK)/
- Yy W
Segment 3 Segment 3 Segment 3 4//(/4;5) % S t?
(8K) (8K) (8K) Segment 6 e%z‘f)”
(4K) Segment 6
Segment 2 Segment 2 Segment 2 Segment 2 (4K)
(5K) (5K) (5K) (5K) T —
l ///// 7 S 7 Y oayd
seqment1 | 2N WK W7 (5K
(8K) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment 0 Segment O Segment O Segment O Segment O
(4K) (4K) (4K) (4K) (4K)
(2) (b) (c) (d) (e)

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction

sun@hit.edu.cn

Segmentation with Paging: MULTICS (1)

CC

~—36 bits ——

: | Page 2 entry
i i Page 1 entry 18 9 111 3 3
Segment 6 descriptor Page 0 entry Main memory address Segment length
of the page table (in pages)
Segment 5 descriptor Page table for segment 3] J ‘
; Page size:
Segment 4 descriptor 0 = 1024 words
Segment 3 descriptor | | 1= 64 words
. + v 0 = segment is paged
Segment 2 descriptor 1= segment Is not paged
Segment 1 descriptor Page 2 entr
g i J 1 Miscellaneous bits
Segment 0 descriptor Page 1 entry
Protection bits
Descriptor segment Page 0 entry

Page table for segment 1

e Descriptor segment points to page tables
o Segment descriptor — numbers are field lengths

sun@hit.edu.cn

Segmentation with Paging: MULTICS (2)

Address within
the segment

Segment number

Page Offset within
humber the page
6 10

18

A 34-bit MULTICS virtual address

sun@hit.edu.cn

Segmentation with Paging: MULTICS (3)

MULTICS virtual address

Segment number

Descriptor
Segment Page
number : number
Descriptor
segment

Page
number

Offset

Page frame \

Page
table

Word

Page

Offset

Conversion of a 2-part MULTICS address into a main memory address

Segmentation with Paging: MULTICS (4)

Comparison s this
field entry
y A ! used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Executeonly | 7 | 1
s 2 12 Execute only 9 1
e T

o Simplified version of the muLTICS TLB
» Existence of 2 page sizes makes actual TLB more complicated

Segmentation with Paging: Pentium

e The Pentium has

— 16K independent segments, each up to 1G
32-bit words

— two tables:
e LDT (Local Descriptor Table)
 GDT (Global Descriptor Table)

e |_oad selectors for the segments into the
machine’s six segment registers

sun@hit.edu.cn

A Pentium selector

Bits 13 1 2

/X

0=GDT/1 =LDT Privilege level (0-3)

Index

 The value of the selector can not be zero

sun@hit.edu.cn

Pentium code segment descriptor

0: 16-Bit segment [

1: 32-Bit segmentJ

0: Liis in bytes
1: Liis in pages |
'1?

I 0: Segment is absent from memory

| 1: Segmentis present in memory

| 0: System

T 7T 7 T

| 1: Application

Privilege level (0-3)

7/
Base 24-31][% *éﬂ'; PlDPL|S| Type Base 16-23
7
Base 0-15 Limit 0-15
32 Bits -

cegment type and protection

4

0

Relative
address

o Data segments descriptor differ slightly

sun@hit.edu.cn

{0
a linear address

Selector Offset
Descriptor
Base address o
e Limit
Other fields
Y

32-Bit linear address

sun@hit.edu.cn

Mapping of a linear address onto a
physical address

Linear address

Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
I 1 I 1 e &
selected Sl
1024 T
Entries T
l . Offset
Dir l

Directory entry Page table
points to entry points
page table to word

If you only need paging

Set up all the segment registers with the
same selector

The selector’s descriptor has Base=0 and
Limit set to the maximum

The instruction offset will then be the
linear address

All current operating systems for the
Pentium work this way besides OS/2

How about need segmentation only?

sun@hit.edu.cn

Protection on the Pentium

Level

sun@hit.edu.cn

