
sun@hit.edu.cn 1

Input/Output

Chapter 5

5.1 Principles of I/O hardware
5.2 Principles of I/O software
5.3 I/O software layers
5.4 Disks
5.5 Clocks
5.7 Graphical user interfaces
5.8 Network terminals

sun@hit.edu.cn 2

INPUT/OUTPUT

• OS
– control all the computer’s I/O devices
– issue commands to the devices, catch

interrupts, and handle errors
– provide an interface between the devices and

the rest of the system that is simple and easy
to use

• the interface should be device independence

sun@hit.edu.cn 3

Principles of I/O Hardware

Some typical
device, network,
and bus data
rates

sun@hit.edu.cn 4

Device Controllers
• I/O devices have components:

– mechanical component
– electronic component

• The electronic component is the device controller
– may be able to handle multiple devices

sun@hit.edu.cn 5

Device Controller’s Tasks

• Convert serial bit stream to block of bytes
of character

• Perform error correction as necessary
– checksum, parity and etc.

• Make data available to main memory
– CPU reads and writes the controller’s

registers to know states and deliver
commands

– data buffer is used to transfer data

sun@hit.edu.cn 6

Memory-Mapped I/O (1)

• Separate I/O and memory space
• Memory-mapped I/O
• Hybrid

sun@hit.edu.cn 7

Memory-Mapped I/O (2)

(a) A single-bus architecture
(b) A dual-bus memory architecture

sun@hit.edu.cn 8

Direct Memory Access (DMA)

Operation of a DMA transfer

sun@hit.edu.cn 9

Interrupts Revisited

How interrupts happens. Connections between devices
and interrupt controller actually use interrupt lines on the
bus rather than dedicated wires

sun@hit.edu.cn 10

Interrupts Revisited

• Check if an interrupt is pending after
each instruction’s execution
– store program counter and PSW, then jump

to interrupt vector
• A pipeline or superscalar CPU’s PC

doesn’t mean the next instruction to
execute but to fetch

sun@hit.edu.cn 11

Interrupts Revisited

• Precise interrupt
– The PC is saved in a known place
– All instructions before the one pointed to by

the PC have fully executed
– No instruction beyond the one pointed to by

the PC has been executed
– The execution state of the instruction

pointed to by the PC is known
• Imprecise interrupt

sun@hit.edu.cn 12

Principles of I/O Software
Goals of I/O Software (1)

• Device independence
– programs can access any I/O device without

specifying device in advance
· (floppy, hard drive, or CD-ROM)

• Uniform naming
– name of a file or device is a string or an

integer
– not depending on which device

• Error handling
– handle as close to the hardware as possible

• controller, driver, application

sun@hit.edu.cn 13

Goals of I/O Software (2)

• Synchronous vs. asynchronous transfers
– blocked transfers vs. interrupt-driven

• Buffering
– data coming off a device cannot be stored in

final destination
• Sharable vs. dedicated devices

– disks are sharable
– tape drives would not be

sun@hit.edu.cn 14

Programmed I/O (1)

Steps in printing a string

sun@hit.edu.cn 15

Programmed I/O (2)

Writing a string to the printer using
programmed I/O

sun@hit.edu.cn 16

Interrupt-Driven I/O

• Writing a string to the printer using interrupt-
driven I/O
– Code executed when print system call is made
– Interrupt service procedure

sun@hit.edu.cn 17

I/O Using DMA

• Printing a string using DMA
– code executed when the print system call is

made
– interrupt service procedure

sun@hit.edu.cn 18

I/O Software Layers

Layers of the I/O Software System

sun@hit.edu.cn 19

Interrupt Handlers (1)

• Interrupt handlers are best hidden
– block the driver starting an I/O operation until

interrupt notifies of completion

• Interrupt procedure does its task
– then unblocks driver that started it

• Steps must be performed in software after
interrupt completed

sun@hit.edu.cn 20

Interrupt Handlers (2)
1. Save registers not already saved by interrupt

hardware
2. Set up context for interrupt service procedure
3. Set up stack for interrupt service procedure
4. Ack interrupt controller, reenable interrupts
5. Copy registers from where they saved to process

table
6. Run service procedure
7. Set up MMU context for process to run next
8. Load new process' registers
9. Start running the new process

sun@hit.edu.cn 21

I/O Software Layers

Layers of the I/O Software System

sun@hit.edu.cn 22

Device Drivers

• Logical position of device drivers is shown here
• Communications between drivers and device

controllers goes over the bus

sun@hit.edu.cn 23

I/O Software Layers

Layers of the I/O Software System

sun@hit.edu.cn 24

Device-Independent I/O Software

Functions of the device-independent I/O software

Providing a device-independent block size

Allocating and releasing dedicated devices

Error reporting

Buffering

Uniform interfacing for device drivers

sun@hit.edu.cn 25

Uniform Interfacing
for Device Drivers

(a) Without a standard driver interface
(b) With a standard driver interface

sun@hit.edu.cn 26

Buffering

(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by copying to user

space
(d) Double buffering in the kernel

sun@hit.edu.cn 27

Buffering

Networking may involve many copies,
performance suffers

sun@hit.edu.cn 28

Error Reporting

• Errors are far more common in I/O than others
– Programming errors

• ask for something impossible
• invalid device, buffer address or other parameter

– I/O errors

• When error occurs
– retry, ignore or quit
– have the system call fail with an error code
– terminate the system (blue screen)

sun@hit.edu.cn 29

Other Functions

• Allocating and releasing dedicated
devices
– open, close
– queue

• Device-independent block size
– different disks may have different sector

sizes
– provide a uniform block size to higher layers

sun@hit.edu.cn 30

User-Space I/O Software

• Link the I/O system call with the program
– count = write(fd, buffer, nbytes);
– printf("i = %d", i);

• Spooling to deal with dedicated devices
– create a special directory—spooling directory
– create a special process—daemon, which is the only

process having permission to use printer
– put the files to be printed in the spooling directory

sun@hit.edu.cn 31

User-Space I/O Software

Layers of the I/O system and the main
functions of each layer

sun@hit.edu.cn 32

Disks

• Magnetic disks
• RAID
• CD-ROMs

– CD-R, CD-RW, DVD

sun@hit.edu.cn 33

Hard Disks

sun@hit.edu.cn 34

Hard Disks

• Cylinders (x)
• Tracks (y)
• Sectors (z)

– usually 512 Bytes
• Total capacity=?

sun@hit.edu.cn 35

Magnetic Disks

Disk parameters for the original IBM PC floppy
disk and a Western Digital WD 18300 hard disk

sun@hit.edu.cn 36

Geometry of a Disk

• Physical geometry of a disk with two zones
• A possible virtual geometry for this disk

sun@hit.edu.cn 37

RAID

• Parallel I/O might be a good idea to
improve performance

• RAID
– Redundant Array of Inexpensive Disks
– Redundant Array of Independent Disks

• SLED
– Single Large Expensive Disk

• Make a RAID to be looked like a SLED
to the OS

sun@hit.edu.cn 38

RAID 0

• Every strip has k sectors
• Works best with large requests

– worst with asking for one sector at a time
• Reliability is worse than a SLED
• Uses all space, no redundancy

sun@hit.edu.cn 39

RAID 1

• There are the same number of backup
disks as the primary disks

• Write performance is no better, but read
performance is up to twice

• Fault tolerance is excellent

sun@hit.edu.cn 40

RAID 2

• Splits each byte into a pair of 4-bit nibbles
• Adds a Hamming code to each one to form a 7-

bit word
• One bit per drive
• Also can 32-bit word with 6 parity bits to form

a 38-bit Hamming word
• Losing one drive did not cause problems

sun@hit.edu.cn 41

RAID 3

• A simplified version of RAID level 2
• A single parity bit is computed for each

data word and written to a parity drive
• One drive crashing can be recovered

sun@hit.edu.cn 42

RAID 4 & 5

• All the strips are
EXCLUSIVE ORed
together to a parity strip

• Write performance is bad
• The parity drive in RAID

4 is bottleneck
• RAID 5 distributes the

parity bits

sun@hit.edu.cn 43

CD-ROM

sun@hit.edu.cn 44

CD-ROM

Recording structure of a CD or CD-ROM

sun@hit.edu.cn 45

CD-ROM

Logical data layout on a CD-ROM

sun@hit.edu.cn 46

CD-R

sun@hit.edu.cn 47

DVD

A double sided, dual layer DVD disk

sun@hit.edu.cn 48

Disk Formatting (1)

A disk sector

sun@hit.edu.cn 49

Disk Formatting (2)

An illustration of cylinder skew

sun@hit.edu.cn 50

Disk Formatting (3)

• No interleaving
• Single interleaving
• Double interleaving

sun@hit.edu.cn 51

Disk Arm Scheduling Algorithms
• Time required to read or write a

disk block determined by 3 factors
1. Seek time
2. Rotational delay
3. Actual transfer time

• Seek time dominates
• Error checking is done by

controllers

sun@hit.edu.cn 52

Shortest Seek First (SSF)
disk scheduling algorithm

Seek request: 11, 1, 36, 16, 34, 9 and 12

sun@hit.edu.cn 53

The elevator algorithm
for scheduling disk requests

sun@hit.edu.cn 54

Error Handling

• Small defeat can be corrected by the
ECC

• Bigger defeat
– deal with them in the controller
– deal with them in the OS

sun@hit.edu.cn 55

Error Handling in Controller

• A disk track with a bad sector
• Substituting a spare for the bad sector
• Shifting all the sectors to bypass the bad one

sun@hit.edu.cn 56

Clocks
Clock Hardware

A programmable clock

sun@hit.edu.cn 57

Clock Software

• Maintaining the time of day
• Preventing processes from running longer than

they are allowed to
• Accounting for CPU usage
• Handling the alarm system call made by user

processes
• Providing watchdog timers for parts of the

system itself
• Doing profiling, monitoring, and statistics

gathering

sun@hit.edu.cn 58

Maintaining the time of day

sun@hit.edu.cn 59

Clock Software

• Preventing processes from running
longer than they are allowed to
– decrement the quantum counter of running

process by 1
• Accounting for CPU usage

– use a second timer to count
– count in the PCB

sun@hit.edu.cn 60

Handling the alarm system call
made by user processes

• Simulating multiple timers with a single clock
• On each tick, Next signal is decremented

sun@hit.edu.cn 61

Clock Software

• Providing watchdog timers for parts of
the system itself
– for kernel software such as drivers and etc.

• Doing profiling, monitoring, and statistics
gathering

sun@hit.edu.cn 62

Soft Timers
• Soft timers avoid interrupts

– kernel checks for soft timer expiration before it exits
to user mode

– how well this works depends on rate of kernel entries
• Kernel entries are made for reasons:

– system calls
– TLB misses
– page faults
– I/O interrupts
– the CPU going idle

sun@hit.edu.cn 63

Graphical User Interface (GUI)

• Invented by Douglas Engelbart and used
by Steve Jobs

• WIMP
– Windows Icons, Menus, and Pointing device

• Can be implemented in either user-level
code or in the operating system itself

sun@hit.edu.cn 64

Keyboard

• All that the keyboard hardware provides
is the key number, not the ASCII code

• An interrupt is generated whenever a key
is struck or released
– DEPRESS SHIFT, DEPRESS A,
RELEASE A, RELEASE SHIFT

– DEPRESS SHIFT, DEPRESS A,
RELEASE SHIFT, RELEASE A

sun@hit.edu.cn 65

Mouse

• The messages sent by mice to the
computer contains three items:
– ⊿x, ⊿y, buttons

• Mouse only reports single click

sun@hit.edu.cn 66

Display Hardware

Memory-mapped displays
• driver writes directly into display's video RAM

Parallel port

sun@hit.edu.cn 67

Monochrome Display

• A video RAM image
• Corresponding screen

sun@hit.edu.cn 68

Input Software

• Keyboard driver delivers a number
– driver converts to characters
– uses a ASCII table

• Exceptions, adaptations needed for
other languages
– many OS provide for loadable

keymaps or code pages

sun@hit.edu.cn 69

Output Software for Windows

Sample window located at (200,100) on XGA display

sun@hit.edu.cn 70

Output Software for Windows

Skeleton of a Windows main program (part 1)

sun@hit.edu.cn 71

Output Software for Windows

Skeleton of a Windows main program (part 2)

sun@hit.edu.cn 72

GDI
(Graphical Device Interface)

• hdc = GetDC(hwnd);
TextOut(

hdc, x, y,
psText, iLength);

ReleaseDC(
hwnd, hdc);

• Rectangle(hdc, 2, 1, 6, 4)

sun@hit.edu.cn 73

Network Terminals
X Windows

Clients and servers in the M.I.T. X Window System

sun@hit.edu.cn 74

Skeleton of an X Windows
Application Program

sun@hit.edu.cn 75

Skeleton of an X Windows
Application Program

