Chapter 5
Input/Output

5.1 Principles of 1/O hardware
5.2 Principles of 1/O software
5.3 1/0O software layers

5.4 Disks

5.5 Clocks

5.7 Graphical user interfaces
5.8 Network terminals

sun@hit.edu.cn

INPUT/OUTPUT

e OS
— control all the computer’s 1/O devices

— I1ssue commands to the devices, catch
Interrupts, and handle errors

— provide an interface between the devices and
the rest of the system that is simple and easy
to use

* the interface should be device independence

sun@hit.edu.cn

Principles of 1/0O Hardware

Some typical
device, network,
and bus data
rates

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec
IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec
ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
Ultrium tape 320 MB/sec
PCI bus 528 MB/sec
Sun Gigaplane XB backplane 20 GB/sec

sun@hit.edu.cn

Device Controllers

1/O devices have components:
— mechanical component
— electronic component

e The electronic component is the device controller
— may be able to handle multiple devices

sun@hit.edu.cn

Monitor
Hard
Keyboard dgl}?gﬁie disk drive
L2} P S
: / ?.E':'.‘-‘:;'.'.‘i'.l'.;: : | nnnnu |
- Floppy Hard
; Video Keyboard .
CPU Memory controller controller 0 or?':?cil er c m?l'?clﬁl or
Bus

Device Controller’s Tasks

o Convert serial bit stream to block of bytes
of character

* Perform error correction as necessary
— checksum, parity and etc.

 Make data available to main memory

— CPU reads and writes the controller’s
registers to know states and deliver
commands

— data buffer i1s used to transfer data

sun@hit.edu.cn

Memory-Mapped 1/0O (1)

Two address

OxFFFF...

Memory

I/O ports

(a)

One address space Two address s

paces

(b)

o Separate I/O and memory space
« Memory-mapped I/O
e Hybrid

sun@hit.edu.cn

(c)

Memory-Mapped 1/0O (2)

CPU reads and writes of memory
go over this high-bandwidth bus

/

CPU Memory /O CPU Memory /O
A3
] ~ |
\ \ N\ This memory port is

All addresses (memory
and |/O) go here

(a) (b)

Bus to allow I/O devices
access to memory

(a) A single-bus architecture
(b) A dual-bus memory architecture

sun@hit.2du.cn

Direct Memory Access (DMA)
@, Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller Pr Buffer
L
v S
4. Ack A
4 L 4
Interrupt when 2. DMA requests
done transfer to memory L3 Data transferred p
-—Bus

Operation of a DMA transfer

sun@hit.edu.cn

Interrupts Revisited

Interrupt 1. Device is finished
CPU 3 CPU acks controller
interrupt
./_\ I l
1
2. Controller —
LY issues ;

How interrupts happens. Connections between devices
and interrupt controller actually use interrupt lines on the
bus rather than dedicated wires

sun@hit.edu.cn

Interrupts Revisited

 Check If an interrupt is pending after
each Instruction’s execution

— store program counter and PSW, then jump
to interrupt vector

» A pipeline or superscalar CPU’s PC
doesn’t mean the next instruction to
execute but to fetch

sun@hit.edu.cn

10

Interrupts Revisited

* Precise interrupt
— The PC is saved in a known place

— All instructions before the one pointed to by
the PC have fully executed

— No instruction beyond the one pointed to by
the PC has been executed

— The execution state of the instruction
pointed to by the PC is known

e Imprecise interrupt

sun@hit.edu.cn 11

Principles of I/O Software
Goals of 1/0 Software (1)

e Device independence

— programs can access any 1/0O device without
specifying device in advance

- (floppy, hard drive, or CD-ROM)

e Uniform naming

— name of a file or device Is a string or an
Integer

— not depending on which device
e Error handling

— handle as close to the hardware as possible

e controller, driver, application
sun@hit.edu.cn 12

Goals of 1/O Software (2)

e Synchronous vs. asynchronous transfers
— blocked transfers vs. interrupt-driven

e Buffering

— data coming off a device cannot be stored In
final destination

 Sharable vs. dedicated devices
— disks are sharable
— tape drives would not be

sun@hit.edu.cn

13

User
space

Kernel
space

Programmed 1/O (1)

String to
be printed
Jr Printed Printed
page page
ABCD J l
EFGH
A
Next = Next 4
Y Y
ABCD ABCD
EFGH EFGH

AB

(a) (b) ()

Steps In printing a string

sun@hit.edu.cn

14

Programmed 1/0 (2)

copy _from_user(buffer, p, count); /* p IS the kernel bufer */

for (i=0; i < count; i++) { /* loop on every character */
while (*printer_status_reg != READY) ; /* loop until ready */
printer _data_register = pJ[i; / output one character */

}

return_to_user();

Writing a string to the printer using
programmed 1/O

sun@hit.edu.cn 15

Interrupt-Driven 1/O

copy_ from _user(buffer, p, count); if (count == 0) {
enable_interrupts(); unblock _user();
while (*printer_status_reg = READY) ; } else {
*printer _data_ register = p[0]; *printer__data_ reqister = pJ[i];
scheduler(); count = count — 1;

i=i+1;

}

acknowledge interrupt();
return_from_interrupt();

(a) (b)
« Writing a string to the printer using interrupt-
driven 1/O

— Code executed when print system call is made
— Interrupt service procedure

sun@hit.edu.cn

16

/O Using DMA

copy_from__user(buffer, p, count); acknowledge _interrupt();
set_up_DMA _controller(); unblock _user();
scheduler(); return_from _interrupt();

(a) (b)

e Printing a string using DMA

— code executed when the print system call is
made

— Interrupt service procedure

sun@hit.edu.cn

17

/O Software Layers

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Layers of the 1/O Software System

sun@hit.edu.cn

18

Interrupt Handlers (1)

Interrupt handlers are best hidden

— block the driver starting an 1/O operation until
Interrupt notifies of completion

Interrupt procedure does Its task
— then unblocks driver that started It

Steps must be performed in software after
Interrupt completed

sun@hit.edu.cn

19

Interrupt Handlers (2)

Save registers not already saved by interrupt
hardware

Set up context for interrupt service procedure
Set up stack for interrupt service procedure
Ack interrupt controller, reenable interrupts

Copy registers from where they saved to process
table

Run service procedure

Set up MMU context for process to run next
Load new process' registers

Start running the new process

sun@hit.edu.cn 20

/O Software Layers

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Layers of the 1/O Software System

sun@hit.edu.cn

21

Device Drivers

User process

4

User
User { program
space

Rest of the operating system

Kernel J
space
A4
Printer Camcorder CD-ROM
driver driver driver
¥
Hardware I Printer controller I ICamcorder comrollerl |CD—HOM controllerl

1

* Logical position of device drivers is shown here

e Communications between drivers and device
controllers goes over the bus

sun@hit.edu.cn

-

22

/O Software Layers

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Layers of the 1/O Software System

sun@hit.edu.cn

23

Device-Independent I/O Software

Uniform interfacing for device drivers

Buffering

Error reporting

Allocating and releasing dedicated devices

Providing a device-independent block size

Functions of the device-independent 1/O software

sun@hit.edu.cn

24

Uniform Interfacing
for Device Drivers

Operating system Operating system
_ | | B J 4 \/ _ = a = _—l_ |
Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver
(a) (b)

(a) Without a standard driver interface
(b) With a standard driver interface

sun@hit.edu.cn

Buffering

User process

[¥
User)
space A

Kernel<
space

Modem
(a)

(a) Unbuffered input

(b) Buffering in user space

(c) Buffering in the kernel followed by copying to user

space

(d) Double buffering in the kernel

sun@hit.edu.cn

26

Buffering

ster process

User J
space L

Kernel
space

& Network
controller

@

- J

e

Metwork

Networking may involve many copies,
performance suffers

sun@hit.edu.cn

27

Error Reporting

e Errors are far more common in I/O than others

— Programming errors
e ask for something impossible
 invalid device, buffer address or other parameter

— 1/O errors
 When error occurs
— retry, ignore or quit
— have the system call fail with an error code
— terminate the system (blue screen)

sun@hit.edu.cn

28

Other Functions

» Allocating and releasing dedicated
devices

— open, close
— queue
e Device-independent block size

— different disks may have different sector
sizes

— provide a uniform block size to higher layers

sun@hit.edu.cn

29

User-Space 1/O Software

e Link the I/O system call with the program
—count = write(fd, buffer, nbytes);
—printfC't = %d", 1);

e Spooling to deal with dedicated devices
— create a special directory—spooling directory

— create a special process—daemon, which is the only
process having permission to use printer

— put the files to be printed in the spooling directory

sun@hit.edu.cn 30

User-Space 1/O Software

/O

Layer / reply /O functions
I/O User processes #| Make I/O call; format 1/O; spooling
request __FVI' f
Device-independent ; ; ; ; ;
| oftware + Naming, protection, blocking, buffering, allocation

|

* Device drivers + Set up device registers; check status
|

Interrupt handlers + Wake up driver when 1/O completed
Y '

Hardware Perform |/O operation

Layers of the 1/O system and the main
functions of each layer

sun@hit.edu.cn

Disks

 Magnetic disks
 RAID

e CD-ROMs
- CD-R, CD-RW, DVD

sun@hit.edu.cn

32

Hard Disks

sun@hit.edu.cn

33

Hard Disks

Cylinders (x)

['racks (y) . —==
r N"H.- -...-"'. o= =

— usually 512 Bytes = TR

Total capacity=" -7

sun@hit.edu.cn

BZ000 Hew UM Werks

34

Magnetic Disks

Parameter IBM 360-KB floppy disk | WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track 9 281 (avg)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) 77 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Disk parameters for the original IBM PC floppy
disk and a Western Digital WD 18300 hard disk

sun@hit.edu.cn

35

Geometry of a Disk

* Physical geometry of a disk with two zones
o A possible virtual geometry for this disk

sun@hit.edu.cn

36

RAID

Parallel 1/0 might be a good idea to
Improve performance

RAID

— Redundant Array of Inexpensive Disks
— Redundant Array of Independent Disks

SLED
— Single Large Expensive Disk

Make a RAID to be looked like a SLED
to the OS

sun@hit.edu.cn 37

A
[~
Strip 0
e
Strip 4
N

Strip 8
—_~

RAID O

N
f—
Strip 1
e
Strip 5
\-.,____l_'___,/

A
f—
Strip 2
i
Strip 6
\‘‘""'I-|_._,_|-l-"""‘J

Strip 9
—

Strip 10
—

AT
[
Strip 3
M
Strip 7
\l"""'lq_._,_l-l-""’

Strip 11
—

RAID level O

Every strip has k sectors

Works best with large requests
— worst with asking for one sector at a time

Reliability 1s worse than a SLED
Uses all space, no redundancy

sun@hit.edu.cn

Strip 0
Strip 4

Strip 8

Strip 1
Strip 5

Strip 9

Y
e
Strip 2
—]
Strip 6
N

Strip 10
~—

RAID 1

Y
—
Strip 3
—]
Strip 7

—]

Strip O
Strip 4

Strip 11
~—

Strip 8
~

Strip 1
Strip 5

Strip 9

AT
ey
Strip 2
N~
Strip 6
—

Strip 10
N

AN
ey
Strip 3
—
Strip 7
SR

Strip 11
e

* There are the same number of backup

disks as the primary disks

* \Write performance iIs no better, but read

performance is up to twice

e Fault tolerance i1s excellent

sun@hit.edu.cn

RAID
level 1

39

« Splits each byte into a pair of 4-bit nibbles

RAID level 2

e Adds a Hamming code to each one to form a 7-

bit word
e One bit per drive

o Also can 32-bit word with 6 parity bits to form

a 38-bit Hamming word
e Losing one drive did not cause problems

sun@hit.edu.cn

40

RAID level 3

o A simplified version of RAID level 2

e Asingle parity bit iIs computed for each
data word and written to a parity drive

e One drive crashing can be recovered

sun@hit.edu.cn

41

AT
P
Strip 0
N
Strip 4
e

Strip 8
e

‘.‘_,....----—----...,."I
[~

Strip 0
N
Strip 4
N
Strip 8
N
Strip 12
N

Y
R

Strip 1
N

Strip 5
e

Strip 9
A

TN
e

Strip 1
N
Strip 5
N

Strip 9
N
P12-15
N

P16-19
~

Y
P~
Strip 2
N
Strip 6
]

Strip 16
~—

Strip 10
S~

I",....----—----....,\\
T
Strip 2
N
Strip 6
N
P8-11
N
Strip 13
N

AT
M~
Strip 3
e
Strip 7
]

Strip 17
~—

Strip 11
~—

f’ﬂ-._--"\
S
Strip 3
1
P4-7
N
Strip 10
N
Strip 14
N

RAID 4 & 5

f".—-‘-‘h\
M~

P0-3
e
P4-7
]
P8-11

Strip 18
~—

S~

r,..--—--...\
M]

P0-3
]
Strip 7
N

Strip 11
e

Strip 15
N

Strip 19
~—

o All the strips are
RAID level 4 EXCLUSIVE ORed
together to a parity strip

* Write performance is bad

e The parity drive in RAID
RAID level 5 4 IS bOttleneCk

e RAID 5 distributes the
parity bits

sun@hit.edu.cn 42

CD-ROM

Polycarbonate plastic

S2J00 Maw FtuTl Works

sun@hit.edu.cn

Label
Acrylic
'.l.lumlnum

1.2 mm

X

43

Spiral groove

2K block of
user data

Recording structure of a CD or CD-ROM

sun@hit.edu.cn

44

CD-ROM

Symbols of
BHB == B 14 bits each

42 Symbols make 1 frame
Frames of 588 bits,

i Y e O e e O e e Y e Y OO0 003 each containing
) - 24 data bytes
Preamble l 98 Frames make 1 sector
¢ Mode 1
Data ECC sector
(2352 bytes)

Bytes 16 2048 288

Logical data layout on a CD-ROM

sun@hit.edu.cn 45

CD-R

Printed label

V.

Protective lacquer Dark spot in the
Reflective gold layer dye layer burned
[[] Dye [k Tlayer [T T=F{ by laser when
1.2 mm writing
Y
Polycarbonate Substrate
Direction
of motion Lens
VJL
Photodetector —»l] - <—— Prism
A
Infrared
[:]<7 laser
diode

sun@hit.edu.cn

46

DVD

Polycarbonate substrate 1 Semireflective
m 1 L1 L - layer
ided <
‘ Aluminum

L L LI L1 1 LI LI LILT], (eflector

_CE I I s riiisirr e

Mo 1 L i i Aluminum
m reflector

ided <

. ; :
1ML ML L] Semireflective

Polycarbonate substrate 2 layer

A double sided, dual layer DVD disk

sun@hit.edu.cn 47

Disk Formatting (1)

Preamble

Data

ECC

A disk sector

sun@hit.edu.cn

48

Disk Formatting (2)

An illustration of cylinder skew

sun@hit.edu.cn

49

Disk Formatting (3)

(@) (b)

* No Interleaving
e Single interleaving
e Double interleaving

sun@hit.edu.cn

50

Disk Arm Scheduling Algorithms

 Time required to read or write a
disk block determined by 3 factors

. Seek time
.. Rotational delay
;. Actual transfer time

e Seek time dominates

 Error checking is done by
controllers

sun@hit.edu.cn

o1

- [Ime

Shortest Seek First (SSF)
disk scheduling algorithm

Initial Pending
position requests

\ L\

X

X

5 10 15 20 25 30 35 Cylinder

é Sequence of seeks

—M

Seek request: 11, 1, 36, 16, 34,9 and 12

sun@hit.edu.cn

52

—-—Time

The elevator algorithm
for scheduling disk requests

Initial

position

\

Xl |X

X

X

X| IX

) 10

15

20 25 30

\\‘siquence of seeks

35 Cylinder

o~

/

sun@hit.edu.cn

53

Error Handling

 Small defeat can be corrected by the
ECC

* Bigger defeat
— deal with them iIn the controller
— deal with them iIn the OS

sun@hit.edu.cn

54

Error Handling in Controller

o A disk track with a bad sector
o Substituting a spare for the bad sector
 Shifting all the sectors to bypass the bad one

sun@hit.edu.cn

55

Crystal oscillator

Clocks

Clock Hardware

—0

Counter is decremented at each pulse

Holding register is used to load the counter

A programmable clock

sun@hit.edu.cn

56

Clock Software

Maintaining the time of day

Preventing processes from running longer than
they are allowed to

Accounting for CPU usage

Handling the alarm system call made by user
DroCesses

Providing watchdog timers for parts of the
system itself

Doing profiling, monitoring, and statistics
gathering

sun@hit.edu.cn

57

Maintaining the time of day

—~— 64 bits

~— 32 bits —>

Y

Time of day in ticks A &
@ i
Time of day Number of ticks
in seconds in current second

(a) (b)

sun@hit.edu.cn

~—— 32 bits —>

Counter in ticks

X

£
System boot time
in seconds

()

58

Clock Software

e Preventing processes from running
longer than they are allowed to

— decrement the guantum counter of running
process by 1

e Accounting for CPU usage
— use a second timer to count
— count in the PCB

sun@hit.edu.cn

59

Handling the alarm system call

Clock
header

made by user processes

Current time

4200

el

3

—ie

4

e |

6

Next signal
3
2| >

1

X

e Simulating multiple timers with a single clock
e On each tick, Next signal i1s decremented

sun@hit.edu.cn

60

Clock Software

* Providing watchdog timers for parts of
the system itself
— for kernel software such as drivers and etc.

* Doing profiling, monitoring, and statistics
gathering

sun@hit.edu.cn

Soft Timers

o Soft timers avoid interrupts

— kernel checks for soft timer expiration before It exits
to user mode

— how well this works depends on rate of kernel entries

o Kernel entries are made for reasons:
— system calls
— TLB misses
— page faults
— 1/O Interrupts
— the CPU going idle

sun@hit.edu.cn

62

Graphical User Interface (GUI)

* Invented by Douglas Engelbart and used
by Steve Jobs

c WIMP
— Windows Icons, Menus, and Pointing device

e Can be implemented in either user-level
code or In the operating system itself

sun@hit.edu.cn

63

Keyboard

 All that the keyboard hardware provides
IS the key number, not the ASCII code

e An interrupt is generated whenever a key
IS struck or released

—DEPRESS SHIFT, DEPRESS A,
RELEASE A, RELEASE SHIFT

—DEPRESS SHIFT, DEPRESS A,
RELEASE SHIFT, RELEASE A

sun@hit.edu.cn

64

Mouse

* The messages sent by mice to the
computer contains three items:

— AX, A4y, buttons
* Mouse only reports single click

sun@hit.edu.cn

65

Display Hardware

Graphics
CPU Memory adapter Video
Video controller
RAM "| | | ™
; \ [———
Bus / Analo
- // %\ video signal

Memory-mapped displays

 driver writes directly into display's video RAM

sun@hit.edu.cn

66

Monochrome Display

Video RAM

Xx3x2x1x0

... XxXDxCxBxA

——160 characters —

(@)

RAM address

0xBOOAO
0xB0O000

A video RAM image
o Corresponding screen

sun@hit.edu.cn

Screen
ABCD 4
0123
25
Y

lines

~— 80 characters —

(a)

67

Input Software

o Keyboard driver delivers a number

—driver converts to characters
—uses a ASCII table

e Exceptions, adaptations needed for
other languages

—many OS provide for loadable
keymaps or code pages

sun@hit.edu.cn

68

Output Software for Windows

(0,0) (1023, 0)
u
(200, 100) —)-J‘ﬂ
M bar —» File 7
Tool bar =3 %
IKIND
Client area
- Scroll bar
Window —
(M« ITw |
/I B a [
(0, 767) (1023, 767)

Sample window located at (200,100) on XGA dlsplay

sun@hit.edu.cn

Output Software for Windows

#include <windows.h>

int WINAPI WinMain(HINSTANCE h, HINSTANCE, hprev, char *szCmd, int iCmdShow)
{

WNDCLASS wndclass; /* class object for this window */
MSG msg; /* incoming messages are stored here */
HWND hwnd; /* handle (pointer) to the window object */

/* Initialize wndclass */

wndclass.lpfnWndProc = WndProc; /* tells which procedure to call */
wndclass.lpszClassName = "Program name"; /* Text for title bar */
wndclass.hlcon = Loadlcon(NULL, IDI_APPLICATION); /* load program icon */
wndclass.hCursor = LoadCursor(NULL, IDC_ARRQOW); /* load mouse cursor */

RegisterClass(&wndclass); /* tell Windows about wndclass */
hwnd = CreateWindow (...) /* allocate storage for the window */
ShowWindow(hwnd, iCmdShow); /* display the window on the screen */
UpdateWindow(hwnd); /* tell the window to paint itself */

Skeleton of a Windows main program (part 1)

sun@hit.edu.cn 70

Output Software for Windows

while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */
TranslateMessage(&msg); /* translate the message */
DispatchMessage(&msg); /* send msg to the appropriate procedure */

}

return(msg.wParam);

}
long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long IParam)
{

/* Declarations go here. */

switch (message) {

case WM _CREATE: ... return...; /* create window */
case WM _PAINT: .., retun...; /* repaint contents of window */
case WM_DESTROY: ...; return..; /* destroy window */

}

return(DefWindowProc(hwnd, message, wParam, IParam));/* default */

Skeleton of a Windows main program (part 2)

sun@hit.edu.cn 71

GDI
(Graphical Device Interface)

e hdc = GetDC(hwnd);

Textout(0 1 2 3 456 7 8
hdc, X, vV,
psText, |Length)1

ReleaseDC(

hwnd, hdc);

~N OO o AW

- Rectangle(hdc, 2, 1, 6, 4)

sun@hit.edu.cn

72

Network Terminals
X Windows

Remote host

" Window Application X terminal
manager program
Motif Window
Lisar < Intrinsics
space
Xlib
X client X server
N
.
UNIX UNIX
Kernel <
space
Hardware Hardware
e
K X protocol
Network

Clients and servers in the M.1.T. X Window System

sun@hit.edu.cn

Skeleton of an X Windows
Application Program

#include <X11/Xlib.h>
#include <X11/Xutil.h>

main(int argc, char *argv[])

{

Display disp; /* server identifier */

Window win; /* window identifier */

GC gc; /* graphic context identifier */
XEvent event; /* storage for one event */

int running = 1;

disp = XOpenDisplay("display_name"); [* connect to the X server */

win = XCreateSimpleWindow(disp, ...): [* allocate memory for new window */
XSetStandardProperties(disp, ...); /* announces window to window mgr */
gc = XCreateGC(disp, win, 0, 0); /* create graphic context */
XSelectinput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask);
XMapRaised(disp, win); /* display window; send Expose event */

sun@hit.edu.cn

74

Skeleton of an X Windows
Application Program

while (running) {
XNextEvent(disp, &event); /* get next event */
switch (event.type) {

case Expose: break; [* repaint window */
case ButtonPress: ...; break; [* process mouse click */
case Keypress: ..., break; [* process keyboard input */
}
}
XFreeGC(disp, gc); /* release graphic context */
XDestroyWindow(disp, win); /* deallocate window’'s memory space */
XCloseDisplay(disp); /* tear down network connection */

sun@hit.edu.cn

75

