Chapter 6
File Systems

6.1 Files

6.2 Directories

6.3 File system implementation
6.4 Example file systems

sun@hit.edu.cn

Long-term
Information Storage

* Must store large amounts of data

* Information stored must survive the
termination of the process using It

e Multiple processes must be able to access
the information concurrently

sun@hit.edu.cn

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

sun@hit.edu.cn

1 Byte

(a)

File Structure

1 Record
F
Ant Fox Pig
Cat || Cow || Dog Goat Lionl] Owl Pony || Rat |]Worm
Hen || Ibis |[Lamb

(b)

e Three kinds of files

()

— byte sequence
— record sequence

— tree

sun@hit.edu.cn

File Types

e Reqgular files

— the ones that contain user information
— ASCI| files and binary files

e Directories

— system files for maintaining the structure of
the file system

sun@hit.edu.cn

File Types

/ Module
Magic number name
Header
Text size
Data size Dat
ate
E BSS size
] i Object Owner
D Symbol table size module
Entry point Protection
P Size
Fi
- S ags Header
poe Text £
Object
module
T Chks * Header
A Relocation A
1 bits 1
Object
module
A Symbol .
" table "

(a) An executable file (b) An archive

sun@hit.edu.cn

File Access

e Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was magnetic tape

 Random access
— bytes/records read in any order
— essential for database systems

— read can be ...
* move file marker (seek), then read or ...
 read and then move file marker

sun@hit.edu.cn

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

sun@hit.edu.cn

File Operations

1. Create
2. Delete
3. Open
4. Close
5. Read
6. Write

/. Append

8. Seek

9. Get attributes
10. Set Attributes
11. Rename

sun@hit.edu.cn

An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv(])

{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc = 3) exit(1); /* syntax error if argc is not 3 */

sun@hit.edu.cn

An Example Program Using File System Calls
(2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd__count <= 0) break; /* if end of file or error, exit loop */
wt__count = write(out_ fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

sun@hit.edu.cn

Memory-Mapped Files

Program Program

text text abc

Data Data Xyz

(a) (b)

(a) Segmented process before mapping files
Into Its address space

(b) Process after mapping

existing file abc into one segment
creating new segment for xyz

sun@hit.edu.cn

Directories
Single-Level Directory Systems

——Root directory

* A single level directory system
— contains 4 files
— owned by 3 different people, A, B, and C

sun@hit.edu.cn

Two-level Directory Systems

Root directory

L_etters indicate owners of the directories and files

sun@hit.edu.cn

Hierarchical Directory Systems

—~—Root directory

User
directory__

A hierarchical directory system

sun@hit.edu.cn

Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

sun@hit.edu.cn

File System Implementation

Partition table

\

e

Entire disk

Disk partition

| ———

MBR

/

Boot block

Super block | Free space mgmt

|-nodes

Root dir

Files and directories

A possible file system layout

sun@hit.edu.cn

Implementing Files (1)

File A File C File E

File G
(4 blocks) (6 blocks) (12 blocks)

(3 blocks)

A r - Ed r - R —
(TTT T T T TIT T T T T T T T I T T T I I7Td
H_J %—J L ~ J

File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(@)

(File A) (File C) (File E) (File G)
—— r N r aia 3 —
EEEENENEEEEESEEEEEEEEENEEEEENEEEEEEEEEEER

_ - L . J
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files D and E have been
removed sun@hit.edu.cn

Implementing Files (2)

File A
—— e = -+— O
File File File File File
block block block block block
0 1 2 3 4
Physical 4 4 2 10 12
block
File B
—4— —— -+ O
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Storing a file as a linked list of disk blocks

sun@hit.edu.cn

Implementing Files (3)

Physical
block
0
1
2 10
3 11
4 7 ——— File A starts here
5
6 ——— File B starts here
7z
8
9
10 12
11 14
12 1
13
14 1
15 ——— Unused block

Linked list allocation using a File Allocation Table in RAM

sun@hit.edu.cn

Implementing Files (4)

File Attributes

Address of disk block 0 >
Address of disk block 1 —
Address of disk block 2 —
Address of disk block 3 —
Address of disk block 4 —
Address of disk block 5 ——»
Address of disk block 6 ——»
Address of disk block 7 —
Address of block of pointers S

Disk block

containing

additional

disk addresses

An example i-node

sun@hit.edu.cn

Implementing Directories (1)

] /
games | attributes games i &
mail | attributes mail l |
i ; i
news i attributes news i T
work | attributes work : \\
(a) (b) Data structure
containing the
attributes

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an I-
node

sun@hit.edu.cn

Implementing Directories (2)

File 1 entry length

File 1 attributes

- Pointer to file 1's name

File 1 attributes

|

Pointer to file 2's name

File 2 attributes

- Pointer to file 3's name

File 3 attributes

Entry - 5 :
for one P J
file e c t -
b u d g

e t (|

File 2 entry length
File 2 attributes
p e r s
o] n n e
| X

File 3 entry length

File 3 attributes

—

[o

I

o |

(a)

== | J|=]~+~]C|O]—=
olo (v |K|a]|~|0
o|—|o|o|a

E% o|o|o|o|o

(b)

Entry
for one
file

> Heap

« Two ways of handling long file names in directory

— (a) In-line

— (b) In a heap

sun@hit.edu.cn

Shared Files (1)

Shared file

File system containing a shared file

sun@hit.edu.cn

Shared Files (2)

e Hard link

— the directories point to the little data
structure associated with the file

e Symbolic link

— create a new LINK file which contains just
the path name of the file to which it is linked

sun@hit.edu.cn

Shared Files (3)

C's directory B's directory C's directory B's directory
\ \
/ \ / \
Owner = C Owner =C Owner = C
Count = 1 Count =2 Count = 1

O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link Is created

(c) After the original owner removes the file

sun@hit.edu.cn

Disk Space Management
Block Size

* An example

— consider a disk with 131,072 bytes per track,
a rotation time of 8.33ms, and an average
seek time of 10ms. The time to read a block
of k bytes Is then the sum of the seek,
rotational delay, and transfer times.

o Assume all files are 2KB

sun@hit.edu.cn

Block Size

1000 UM R S S S O S S —— | — 100
Disk space utilization \\

cC

o 800 - — 80 8

Q ©

w N
X 600 —{ 60 5§
@ g 2
@ 18

- 5

200 |- H20 B

Data rate e
0 Py | | | 0
0O 128 256 512 1K 2K 4K 8K 16K O

Block size

o Dark line (left hand scale) gives data rate of a disk
o Dotted line (right hand scale) gives disk space efficiency
o All files 2KB

sun@hit.edu.cn

Block Size

 For UNIX, 1 KB block is commonly used

 For MS-DOS family, the block size can
be any power of two from 512 bytes to 32
KB which is determined by the disk size

sun@hit.edu.cn

Disk Space Management
Keeping Track of Free Blocks

LC

42 s 230 Y 86
136 162 234
210 612 897
97 342 422
41 214 140
63 160 223
21 664 223
48 216 160
262 320 126
310 180 142
516 J’J 482 f’) 141
A 1 KB disk block can hold 256
32-bit disk block numbers
(@)

1001101101101100

0110110111110111

1010110110110110

0110110110111011

1110111011101111

1101101010001111

0000111011010111

1011101101101111

1100100011101

by
IC

~1,
it

0111011101110111

1101111101110111

A bit map

(b)

(a) Storing the free list on a linked list
(b) A bitmap

sun@hit.edu.cn

Linked List

Disk

(b)

(a (c)

(a) Almost-full block of pointers to free disk blocks In
RAM

- three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

- shaded entries are pointers to free disk blocks

sun@hit.edu.cn

Disk Space Management
Disk Quotas

Open file table Quota table
Attributes Soft block limit
disk addresses Hard block limit
User =8

Current # of blocks

Quota pointer — # Block warnings left >E;L£E
Soft file limit for user 8
Hard file limit

Current # of files

(99
)}
\L

))

File warnings left

J)
[$Y
)
L%

Quotas for keeping track of each user’s disk use

sun@hit.edu.cn

File System Reliability

o Data is more expensive than hardware

e Backup!
— Recover from disaster
— Recover from stupidity

* A backup takes a long time and occupies a
large amount of space
— backup only part of the file system
— backup changed files

 incremental dump
— compression
— difficult to backup an active file system
— nontechnical problems

sun@hit.edu.cn

Dump Strategies

e Physical Dump
— easy
— fast
— not flexible

e Logical Dump

— starts at one or more specified directories
and recursively dumps all files and
directories found there than have changed
since some given base date

sun@hit.edu.cn

An Algorithm about Logical Dump

1 |[<—— Root directory

— —

2 5 16 18 27

6 (®) 19 28) |29

Directory /\ /\

that has not —»{ 7 10 20 22 30

changed
ép 23 ‘ &
é@ File that FZI(that h
‘ ; ile that has
@ @ has changed @ @ not changed

o A file system to be dumped
— squares are directories, circles are files
— shaded items, modified since last dump
— each directory & file labeled by I-node number

sun@hit.edu.cn

An Algorithm about Logical Dump

(a) |112|3]4|5|6|7|8|9|10|11{12|13|14|15|16|17|18]19|20]|21|22]|23|24|25|26|27|28|29|30|3 1|32

(b) |112|3]4|5|6|7|8|9]|10|11|12|13|14|15]|16|17|18]19|20]|21|22]|23|24]|25|26|27|28|29|30|31|32

(c) 11]12|3|4|5]|6|7]|8|9|10]11|12|13|14|15[|16]17]18]19]|20|21]|22|23|24|25|26]|27|28]|29|30]|31|32

(d) |1]2]|3|4|5|6|7]|8]|9|10|11|12]13|14|15({16|17|18]|19]|20]|21]|22|23|24|25|26|27]28]|29]|30|31|32

Bit maps used by the
logical dumping algorithm

sun@hit.edu.cn

An Algorithm about Logical Dump

e Restore
— create an empty file system

— restore the most recent full dump
» directories are all restored first

— the files are restored

— repeated this process with the following
Incremental dump

sun@hit.edu.cn

File System Consistency

Block number Block number
12345678 9101112131415 012345678 9101112131415

TH{o 1oty 1jojoy11)1{0|0|Blocks in use TP T{OpT o111y 11010)11f1]0]0]Blocks in use

of1]o|1|ofofo|o]1]1{o]ofo]1|1]|Free blocks ojofojo|1|ofoja|o]t1|1]olo]of1|1|Free blocks
(@) (b)
123456789101112131415 0123456789101112131415

T top1f1111ojo1111|0|0|Blocks in use Tfr{oprfo211(1{ 1101011111110]0] Blocks in use

O(1(012101010]011|1]0]10|0|1]|1|Free blocks Qlo|11011{0j0|0J0|1{1|O[0fjO)1]|1|Free blocks

e File system states
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block

sun@hit.edu.cn

Hash table

File System Performance
Caching

Front (LRU)

¢%7<\\ N

by

A N A

/

The block cache data structures

sun@hit.edu.cn

Rear (M RU)

— -
——

Reducing Disk Arm Motion

|-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes
of the disk

Cylinder group

(@) (b)

* |-nodes placed at the start of the disk

o Disk divided into cylinder groups
— each with its own blocks and i1-nodes

sun@hit.edu.cn

og-Structured File Systems

o With CPUs faster, memory larger
— disk caches can also be larger

— Increasing number of read requests can come from
cache

— thus, most disk accesses will be writes

o |LFS Strategy structures entire disk as a log
— have all writes initially buffered in memory
— periodically write these to the end of the disk log
— when file opened, locate I1-node, then find blocks

sun@hit.edu.cn

Example File Systems
CD-ROM File Systems

Padding
es 11 8 8 7 1 2 4 1 4-15 l ____________
Location of file File Size Date and time CD# [L| Filename Sys
Flags = f
L Extended attribute record length e
Iiteriasve Base name . Ext |.|Ver

Directory entry length

The I1SO 9660 directory entry

sun@hit.edu.cn

The CP/M File System (1)

Address
OxFFFF

0x100
0

. — — — — — — — — e e — — — — — — —

User program

Zero page

Memory layout of CP/M

sun@hit.edu.cn

The CP/M File System (2)

Bytes 1 8 3 1 2 —= 16
7
File name %
. .
T . / / ‘Y Disk blocﬁ numbers
User code File type Extent Block count

(extension)

The CP/M directory entry format

sun@hit.edu.cn

Bytes

The MS-DOS File System (1)

8 3 2 2 2 4

Fli § %/////(////ﬂ \ \Size

Extension Atiributes Reserved Time Date First
block
number

The MS-DOS directory entry

sun@hit.edu.cn

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 1B
8 KB 512 MB 2 1B
16 KB 1024 MB 2 1B
32 KB 2048 MB 2 1B

o Maximum partition for different block sizes
 The empty boxes represent forbidden combinations

sun@hit.edu.cn

Bytes

The Windows 98 File System (1)

8 3 11 1 4 2 2 4 2 4
N Creation Last Last write "
Ease ems Ext T date/time |access date/time Flisislze
Ainibtes Sec Upper 16 bits Lower 16 bits
of starting of starting
block block

The extended MOS-DQOS directory entry

used in Windows 98

sun@hit.edu.cn

The Windows 98 File System (2)

Bytes 1 10 1 1 1 12 4
5 characters 0 6 characters 2 characters
Sequence Attributes /
Checksum

An entry for (part of) a long file name
In Windows 98

sun@hit.edu.cn

The Windows 98 File System (3)

C
68| d o g A|O0|k 0
C
3| o ' e AlO|k| t h e I a| o z y
C
2 w n f o [AlO|k| X j u m p 0 S
C
11 T h e q |[A|O|k]| u i € K b 0 r 0
N Creation |Last Last _
TIHEQU I & 1 AlT|S time ace | Upp write Low Size
Bytes I T T T T T 1T 11 1 1 I | T 1 | T 1

An example of how a long name is stored in Windows 98

sun@hit.edu.cn

The UNIX V7 File System (1)

Bytes 2 14
File name
|-node
number

A UNIX V7 directory entry

sun@hit.edu.cn

Disk addresses

The UNIX V7 File System (2)

[-node
Attributes Single
indirect
1 block
:; Double
indirect = o il
block

vl
N

\ — -

A UNIX 1-node

sun@hit.edu.cn

Triple

indirect

4

block

Addresses of
data blocks

-

>

4

\

f

\

The UNIX V7 File System (3)

Block 132 |-node 26 Block 406
|-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1] . 6| 26 |
Mode Mode
1] .. size 1| e size B | o
_ times _ times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
|-node 6 |-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields /usr is in is i-node /usr/ast is in is i-node
i-node 6 block 132 26 block 406 60

The steps in looking up /usr/ast/mbox

sun@hit.

